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A countable-state mean-field model

▶ N particles. State space: positive integers Z.

▶ State of the nth particle at time t is XN
n (t) ∈ Z.

▶ Certain allowed transitions: specified by a directed graph
(Z, E).

▶ Empirical measure at time t

µN(t) =
1

N

N∑
n=1

δXN
n (t) ∈ M1(Z).

▶ For each (z , z ′) ∈ E , we have a function
λz,z ′ : M1(Z) → [0,∞).

▶ Particle transitions: at time t, a z → z ′ transition occurs at
rate λz,z ′(µ

N(t)). Mean-field interaction.

▶ {(XN
n (t), 1 ≤ n ≤ N), t ≥ 0} is a Markov process on ZN .

{µN(t), t ≥ 0} is a Markov process on M1(Z).
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A countable-state mean-field model

▶ µN is a Markov process on M1(Z) with infinitesimal generator

LN f (ξ) =
∑

(z,z ′)∈E

Nξ(z)λz,z ′(ξ)

[
f

(
ξ +

δz ′

N
− δz

N

)
− f (ξ)

]
.

▶ Under suitable conditions, LN possesses a unique invariant
probability measure ℘N .

▶ Goal: study the large deviations of the family {℘N ,N ≥ 1}.
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Example: Medium access control (MAC) algorithms

▶ N nodes accessing a common wireless medium. Interaction
among nodes via the distributed MAC protocol.

▶ State XN
n (t) represents aggressiveness of packet transmission.

▶ E = {(z , z + 1), z ≥ 0} ∪ {(z , 0), z ≥ 1}.
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▶ State evolution:
▶ Becomes less aggressive after a collision.
▶ Moves to the most aggressive state after a successful packet

transmission.

▶ Transition rates:

λz,0(ξ) = cz exp{−⟨c , ξ⟩},
λz,z+1(ξ) = cz(1− exp{−⟨c , ξ⟩}).
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The mean-field limit

▶ Recall the empirical measure process µN . It is a
D([0,T ],M1(Z))-valued random element.

▶ Typical behavior of µN (mean-field limit): Let µN(0) → ν as
N → ∞. Assume that λz,z ′ are Lipschitz continuous. Then
{(µN(t), 0 ≤ t ≤ T )} converges in probability to the solution
to the McKean-Vlasov equation:

µ̇t = Λ∗
µt
µt , µ0 = ν.

[Oelschlager (1984), Bordenave et al. (2010)].

▶ Thus, µN is a small random perturbation of the above ODE.

ν
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Large deviation principle (LDP)

▶ Let S be a complete and separable metric space. Let
{XN ,N ≥ 1} be a sequence of S-valued random variables.

▶ Roughly, P(XN ∈ A) ∼ exp{−N infx∈A I (x)}.
▶ Definition: {XN ,N ≥ 1} is said to satisfy the LDP on S with

rate function I if

♢ (Compactness of level sets). For any s ≥ 0,
Φ(s) := {x ∈ S : I (x) ≤ s} is a compact subset of S ;

♢ (LDP lower bound). For any γ > 0, δ > 0, and x ∈ S , there
exists N0 ≥ 1 such that

P(dist(XN , x) < δ) ≥ exp{−N(I (x) + γ)}

for any N ≥ N0;
♢ (LDP upper bound). For any γ > 0, δ > 0, and s > 0, there

exists N0 ≥ 1 such that

P(dist(XN ,Φ(s)) ≥ δ) ≤ exp{−N(s − γ)}

for any N ≥ N0.
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Process-level large deviations of µN

Theorem (Léonard (1995), Borkar and Sundaresan (2012))

Let νN → ν weakly. Then µN
νN

satisfies the LDP on
D([0,T ],M1(Z)) with rate function S[0,T ](·|ν) defined as follows.
If µ0 = ν and [0,T ] ∋ t 7→ µt ∈ M1(Z) is absolutely continuous,

S[0,T ](µ|ν) =
∫
[0,T ]

sup
α∈R|Z|

{
⟨α, µ̇t − Λ∗

µt
µt⟩

−
∑

(z,z ′)∈E

τ(α(z ′)− α(z))λz,z ′(µt)µt(z)

}
dt,

else S[0,T ](µ|ν) = ∞. Here, τ(u) = eu − u − 1.

ν

McKean-Vlasov trajectory

Another path µ.
Prob ≈ e−NS[0,T ](µ|ν).
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Large deviations of ℘N

▶ Assume that the McKean-Vlasov equation has a unique
globally asymptotically stable equilibrium ξ∗ ∈ M1(Z).

▶ Consider the Freidlin-Wentzell quasipotential

V (ξ) = inf{S[0,T ](φ|ξ∗) : φ0 = ξ∗, φT = ξ,T > 0}, ξ ∈ M1(Z).

ξ
ξ∗

−T 0

▶ V is a natural candidate rate function for the family
{℘N ,N ≥ 1}.

▶ Small noise diffusions (Freidlin and Wentzell (1984)),
finite-state mean-field models (Borkar and Sundaresan
(2012)), reaction-diffusion equations (Sowers (1992), Cerrai
and Röckner (2004)), stochastic wave equation (Martirosyan
(2017)).
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Large deviations of ℘N : A counterxample

▶ Consider the non-interacting MAC system
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The stationary law of each particle is

ξ∗(z) =
λb

λf + λb

(
λf

λf + λb

)z

, z ∈ Z.

▶ ℘N is the law of 1
N

∑N
n=1 δYn , where {Yn} are i.i.d. ξ∗. By

Sanov’s theorem, {℘N ,N ≥ 1} satisfies the LDP with rate
function H(·∥ξ∗).

▶ Let ι(z) = z , ϑ(z) = z log z .

▶ If ξ ∈ M1(Z) is such that ⟨ξ, ι⟩ < ∞ and ⟨ξ, ϑ⟩ = ∞, then
V (ξ) = ∞ but H(ξ∥ξ∗) < ∞.

▶ In particular, V ̸= H(·∥ξ∗).
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Assumptions and main result

▶ Assumptions:
▶ There exist positive constants λ and λ such that

λ

z + 1
≤ λz,z+1(ξ) ≤

λ

z + 1
, and λ ≤ λz,0(ξ) ≤ λ,

for each ξ ∈ M1(Z).

▶ The functions (z + 1)λz,z+1(·), z ∈ Z, and λz,0(·),
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Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V : If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V : If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.

▶ The process-level uniform LDP for {µN
ν } over compact subsets

of M1(Z).
▶ A continuity property of V : If ξn → ξ in M1(Z) and

⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.
▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V : If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V :

If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V : If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Remarks

▶ Main difficulty: the space M1(Z) is infinite dimensional. It is
not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
▶ The process-level uniform LDP for {µN

ν } over compact subsets
of M1(Z).

▶ A continuity property of V : If ξn → ξ in M1(Z) and
⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.

▶ The strong Markov property of µN .



Uniform large deviations

▶ µN
ν : process starting from ν. Indexed by two parameters.

Definition
{µN

ν } is said to satisfy the uniform LDP over a class of subsets
A ⊂ M1(Z) if

♢ for each K ⊂ M1(Z) compact and s > 0, K =
⋃

ν∈K Φν(s) is a
compact subset of D([0,T ],M1(Z));

♢ for any γ > 0, δ > 0, s > 0 and A ∈ A, there exists N0 ≥ 1 such that

Pν(dist(µ
N
ν , φ) < δ) ≥ exp{−N(S[0,T ](φ|ν) + γ)},

for all ν ∈ A, φ ∈ Φν(s) and N ≥ N0;
♢ for any γ > 0, δ > 0, s0 > 0 and A ∈ A, there exists N0 ≥ 1 such

that

Pν(dist(µ
N
ν ,Φν(s)) ≥ δ) ≤ exp{−N(s − γ)},

for all ν ∈ A, s ≤ s0 and N ≥ N0.

▶ We can show that {µN
ν } satisfies the uniform LDP over the

class of compact subsets of M1(Z).
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Properties of the quasipotential

▶ Recall the transition graph:
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▶ Finiteness of V :
▶ V (ξ) < ∞ if and only if ⟨ξ, ϑ⟩ < ∞.

▶ We can construct a piecewise constant-velocity trajectory φ
from ξ∗ to ξ via δ0 such that S[0,T ](φ|ξ∗) < ∞.

▶ Continuity of V :
▶ If ξn → ξ in M1(Z) and ⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩, then V (ξn) → V (ξ).
▶ Construct a small-cost trajectory connecting ξn to ξ.
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Proof sketch: Lower bound

Φ(s) (compact)

ξ∗

ξ

φ

▶ ℘N(nbd(ξ)) ≥ 1
2P(µ

N
nbd(ξ∗) ∈ nbd(φ)) ≥ exp{−N(V (ξ) + γ)}.

▶ The second inequality uses the uniform LDP over compact
subsets of M1(Z).



Proof sketch: Upper bound

℘N(∼ nbd(Φ(s)))

≤ exp{−Ns}+ P(µN
Φ(s)(T ) /∈ nbd(Φ(s))

≤ exp{−Ns}
+ P(µN

Φ(s) does not hit nbd(ξ
∗))

+ P(µN
nbd(ξ∗) ∈ nbd(φ))

≤ exp{−N(s − γ)}
Φ(s) (compact)

ξ∗
φ

▶ The first inequality uses exponential tightness.

▶ The second inequality uses the continuity of V under the
convergence of ϑ-moments, and the strong Markov property.

▶ The third inequality uses the uniform LDP over compact
subsets of M1(Z).



Summary and future directions

▶ Summary: LDP for the invariant measure in countable-state
mean-field models.
▶ A counterexample where the Freidlin-Wentzell quasipotential is

not the rate function.
▶ A sufficient condition for it to be the rate function.

▶ Future directions:
▶ Uniform LDP (over open sets) for countable-state mean-field

models.
▶ A generalized quasipotential.
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