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» Certain allowed transitions: specified by a directed graph
(Z,€).

» Empirical measure at time t

N
1
pl(t) = N Z5x,4v(t) € My(2).
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» For each (z,Z') € £, we have a function
)\2721 . Ml(Z) — [0,00)

P Particle transitions: at time t, a z — Z' transition occurs at
rate A, /(1" (t)). Mean-field interaction.

> {(XN(t),1 < n<N),t>0}isa Markov process on ZN.
{uN(t), t > 0} is a Markov process on M;(Z).
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» 1" is a Markov process on M;(Z) with infinitesimal generator

LA = Y NE@ e (6) [f (f + % - (/;\7> B f(g)] ’

(z,2)e€

» Under suitable conditions, LV possesses a unique invariant
probability measure p".

> Goal: study the large deviations of the family {o"N, N > 1}.
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» N nodes accessing a common wireless medium. Interaction
among nodes via the distributed MAC protocol.

> State XV(t) represents aggressiveness of packet transmission.
> £={(z,z+1),z >0} U{(z,0),z > 1}.

» State evolution:

» Becomes less aggressive after a collision.
»> Moves to the most aggressive state after a successful packet
transmission.

» Transition rates:
>\z,0(§) = ¢ exp{—(c, §>}7
Azz+1(§) = (1 — exp{—(c,&)}).
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» Recall the empirical measure process V. It is a
D([0, T], M1(Z))-valued random element.

> Typical behavior of 1V (mean-field limit): Let uN(0) — v as
N — oo. Assume that A, . are Lipschitz continuous. Then
{(uN(t),0 < t < T)} converges in probability to the solution
to the McKean-Vlasov equation:

i = N, e, po = V.

[Oelschlager (1984), Bordenave et al. (2010)].
» Thus, 1N is a small random perturbation of the above ODE.
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> Let S be a complete and separable metric space. Let
{XN N > 1} be a sequence of S-valued random variables.

» Roughly, P(XN € A) ~ exp{—Ninf,ca l(x)}.

> Definition: {XN N > 1} is said to satisfy the LDP on S with
rate function / if

¢ (Compactness of level sets). For any s > 0,
®(s) :={x € S:/(x) < s} is a compact subset of S;

O (LDP lower bound). For any v >0, >0, and x € S, there
exists Ny > 1 such that

P(dist(XN, x) < §) > exp{—N(I(x) +7)}
for any N > Np;
O (LDP upper bound). For any v >0, § > 0, and s > 0, there
exists Ny > 1 such that

P(dist(X", &(s)) > §) < exp{~N(s — 7)}

for any N > Nj.
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Let vy — v weakly. Then ,ub’N satisfies the LDP on
D([0, T], M1(Z)) with rate function Sy 7(-|v) defined as follows.
If o =v and [0, T] > t — pr € Mi(Z2) is absolutely continuous,

S[O,T](IU’|V) = / sup {<O‘Hut - /\;“ut>
[0,T] acRIZI

o Z T(a(zl)_O‘(Z)))‘z,z’(lﬁt)/«ét(z)}dt,

(z,2')e&

else S, 7)(11|v) = oo. Here, 7(u) = " —u—1.

McKean-Vlasov trajectory

Another path p.
Prob &~ e NSo.n(ul),
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Large deviations of oV

» Assume that the McKean-Vlasov equation has a unique
globally asymptotically stable equilibrium £* € M;(Z).
» Consider the Freidlin-Wentzell quasipotential

V(&) = inf{Sjo,11(#l€7) s po =& o7 =&, T >0}, § € Mi(Z).

3
5*

-T 0

> V is a natural candidate rate function for the family
{p", N =1}

» Small noise diffusions (Freidlin and Wentzell (1984)),
finite-state mean-field models (Borkar and Sundaresan
(2012)), reaction-diffusion equations (Sowers (1992), Cerrai
and Rockner (2004)), stochastic wave equation (Martirosyan
(2017)).
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Large deviations of p": A counterxample

» Consider the non-interacting MAC system

The stationary law of each particle is

Ap A \?
“(2) = z.
&) Af+Ab<Af+Ab> 2 €

> oM is the law of 2 SN 5y, , where {Y,} arei.i.d. £*. By

Sanov's theorem, {©N, N > 1} satisfies the LDP with rate

function H(-[|£*).

Let 1(z) = z, ¥(2) = zlog z.

> If £ € Mi(Z2) is such that (£,t) < oo and (£, ¥) = oo, then
V(§) = oo but H(£][€7) < oo

» In particular, V # H(||£*).

v
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Assumptions and main result

» Assumptions:

> There exist positive constants A and ) such that
A ) (§)<L and A < A\, 0(6) <X
z+1 - z,z+1 _z+17 A XS Az0 = /\,

for each £ € My(Z).

» The functions (z + 1)A; .11(), z € Z, and A, 0("),
z € Z\ {0}, are uniformly Lipschitz continuous on M;(Z2).

» There is a unique globally asymptotically stable equilibrium £*
for the McKean-Vlasov equation

fre = A:,t,uta Mo = V.

Theorem
Under the above assumptions, the family {o", N > 1} satisfies the
LDP on My(Z) with rate function V.
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Remarks

| 2

Main difficulty: the space M;i(Z) is infinite dimensional. It is
not locally compact.

Since V' has compact level sets, it cannot be continuous.

We transfer the process-level uniform LDP for 1V to the
stationary regime (Sowers (1992)).
Main ingredients in the proof:
> Exponential tightness of {p"}:
eV ({€: (€,9) < M}C) < exp{—NM'} for all N.
» The process-level uniform LDP for {uN} over compact subsets
of Ml(Z)
> A continuity property of V: If £, — £ in My(Z) and
(€n,0) — (£,9) as n — oo, then V/(&,) — V(§) as n — .
» The strong Markov property of p/V.
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Uniform large deviations

» 1. process starting from v. Indexed by two parameters.

Definition
{uN1 is said to satisfy the uniform LDP over a class of subsets
A C Ml( ) if

O for each K C My(Z) compact and s >0, K = J,cx ®u(s) is a
compact subset of D([0, T], M1(Z));
O foranyy > 0,6 >0,s5s>0and A € A, there exists Ny > 1 such that

P, (dist(u)), 0) < 8) > exp{—N(Sp,71(¢|v) +7)}.

forallv e A o€ ®,(s) and N > Np;
O forany v > 0,6 > 0,50 >0 and A € A, there exists Ny > 1 such
that

P, (dist(1)), ®,(s)) > 6) < exp{—N(s — )},
forallve A s <syand N> Nj.

» We can show that {uV} satisfies the uniform LDP over the
class of compact subsets of M;(Z2).
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Properties of the quasipotential

P Recall the transition graph:

» Finiteness of V:
> V(&) < oo if and only if (£,9) < co.
» We can construct a piecewise constant-velocity trajectory ¢
from £* to £ via g such that Sy 71([€*) < oo.
» Continuity of V:
> If &, — & in My(Z) and (£,,9) — (€,9), then V(&,) = V/(§).
» Construct a small-cost trajectory connecting &, to &.



Proof sketch: Lower bound

®(s) (compact)

> o¥(nbd(€)) > 1P(UMy c., € nbd (1)) > exp{~N(V() +7)}.
» The second inequality uses the uniform LDP over compact
subsets of M;(Z).



Proof sketch: Upper bound

o (~ nbd(®(s)))
< exp{—Ns} + P15 (T) ¢ nbd(®(s))
< exp{—Ns}

+ P(,ugl(s) does not hit nbd(£™))

+ P(Mglbd(g*) € nbd(y))

< exp{—N(s—~)} N g
’ ! ®(s5) (compact)

» The first inequality uses exponential tightness.

» The second inequality uses the continuity of V under the
convergence of -moments, and the strong Markov property.

» The third inequality uses the uniform LDP over compact
subsets of Mi(Z2).
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