A sufficient condition for the quasipotential to be the rate function of the invariant measure of countable-state mean-field interacting particle systems

Sarath Yasodharan, Brown University Joint work with Rajesh Sundaresan (Indian Institute of Science)

> Joint Mathematics Meetings 04 January 2023

- ▶ *N* particles. State space: positive integers Z.
- State of the *n*th particle at time *t* is $X_n^N(t) \in \mathcal{Z}$.

- ▶ *N* particles. State space: positive integers Z.
- State of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- Certain allowed transitions: specified by a directed graph (Z, E).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ *N* particles. State space: positive integers Z.
- State of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- Certain allowed transitions: specified by a directed graph (Z, E).
- Empirical measure at time t

$$\mu^{N}(t) = rac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ *N* particles. State space: positive integers Z.
- State of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- Certain allowed transitions: specified by a directed graph (Z, E).
- Empirical measure at time t

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

- For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, \infty)$.
- Particle transitions: at time t, a z → z' transition occurs at rate λ_{z,z'}(μ^N(t)). Mean-field interaction.

- ▶ *N* particles. State space: positive integers Z.
- State of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- Certain allowed transitions: specified by a directed graph (Z, E).
- Empirical measure at time t

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)}\in M_{1}(\mathcal{Z}).$$

- For each $(z, z') \in \mathcal{E}$, we have a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to [0, \infty)$.
- Particle transitions: at time t, a z → z' transition occurs at rate λ_{z,z'}(μ^N(t)). Mean-field interaction.
- ► { $(X_n^N(t), 1 \le n \le N), t \ge 0$ } is a Markov process on \mathcal{Z}^N . { $\mu^N(t), t \ge 0$ } is a Markov process on $M_1(\mathcal{Z})$.

$$\blacktriangleright \mu^N$$
 is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

•
$$\mu^N$$
 is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Under suitable conditions, L^N possesses a unique invariant probability measure p^N.

•
$$\mu^N$$
 is a Markov process on $M_1(\mathcal{Z})$ with infinitesimal generator

$$L^{N}f(\xi) = \sum_{(z,z')\in\mathcal{E}} N\xi(z)\lambda_{z,z'}(\xi) \left[f\left(\xi + \frac{\delta_{z'}}{N} - \frac{\delta_{z}}{N}\right) - f(\xi) \right].$$

- Under suitable conditions, L^N possesses a unique invariant probability measure p^N.
- Goal: study the large deviations of the family $\{\wp^N, N \ge 1\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

N nodes accessing a common wireless medium. Interaction among nodes via the distributed MAC protocol.

- N nodes accessing a common wireless medium. Interaction among nodes via the distributed MAC protocol.
- State $X_n^N(t)$ represents aggressiveness of packet transmission.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- N nodes accessing a common wireless medium. Interaction among nodes via the distributed MAC protocol.
- State $X_n^N(t)$ represents aggressiveness of packet transmission.

- N nodes accessing a common wireless medium. Interaction among nodes via the distributed MAC protocol.
- State $X_n^N(t)$ represents aggressiveness of packet transmission.

State evolution:

Becomes less aggressive after a collision.

Moves to the most aggressive state after a successful packet transmission.

- N nodes accessing a common wireless medium. Interaction among nodes via the distributed MAC protocol.
- State $X_n^N(t)$ represents aggressiveness of packet transmission.

State evolution:

- Becomes less aggressive after a collision.
- Moves to the most aggressive state after a successful packet transmission.

Transition rates:

$$\lambda_{z,0}(\xi) = c_z \exp\{-\langle c, \xi \rangle\},\\ \lambda_{z,z+1}(\xi) = c_z (1 - \exp\{-\langle c, \xi \rangle\}).$$

The mean-field limit

▶ Recall the empirical measure process µ^N. It is a D([0, T], M₁(Z))-valued random element.

The mean-field limit

- Recall the empirical measure process µ^N. It is a D([0, T], M₁(Z))-valued random element.
- Typical behavior of μ^N (mean-field limit): Let μ^N(0) → ν as N → ∞. Assume that λ_{z,z'} are Lipschitz continuous. Then {(μ^N(t), 0 ≤ t ≤ T)} converges in probability to the solution to the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda^*_{\mu_t} \mu_t, \ \mu_0 = \nu.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Oelschlager (1984), Bordenave et al. (2010)].

The mean-field limit

- Recall the empirical measure process µ^N. It is a D([0, T], M₁(Z))-valued random element.
- Typical behavior of μ^N (mean-field limit): Let μ^N(0) → ν as N → ∞. Assume that λ_{z,z'} are Lipschitz continuous. Then {(μ^N(t), 0 ≤ t ≤ T)} converges in probability to the solution to the McKean-Vlasov equation:

$$\dot{\mu}_t = \Lambda^*_{\mu_t} \mu_t, \ \mu_0 = \nu.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

[Oelschlager (1984), Bordenave et al. (2010)].

• Thus, μ^N is a small random perturbation of the above ODE.

▶ Let S be a complete and separable metric space. Let $\{X^N, N \ge 1\}$ be a sequence of S-valued random variables.

► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.
- Definition: $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function I if

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.
- Definition: $\{X^N, N \ge 1\}$ is said to satisfy the LDP on S with rate function I if

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

♦ (Compactness of level sets). For any $s \ge 0$, $\Phi(s) := \{x \in S : I(x) \le s\}$ is a compact subset of S;

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.
- ▶ Definition: {X^N, N ≥ 1} is said to satisfy the LDP on S with rate function I if
 - $\begin{array}{l} \diamondsuit \\ (\text{Compactness of level sets}). \text{ For any } s \geq 0, \\ \Phi(s) := \{x \in S : I(x) \leq s\} \text{ is a compact subset of } S; \end{array}$
 - \Diamond (LDP lower bound). For any $\gamma>$ 0, $\delta>$ 0, and $x\in S,$ there exists $N_0\geq 1$ such that

$$P(\operatorname{dist}(X^N, x) < \delta) \ge \exp\{-N(I(x) + \gamma)\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for any $N \ge N_0$;

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$.
- ▶ Definition: {X^N, N ≥ 1} is said to satisfy the LDP on S with rate function I if
 - $\begin{array}{l} \diamondsuit \\ (\text{Compactness of level sets}). \text{ For any } s \geq 0, \\ \Phi(s) := \{x \in S : I(x) \leq s\} \text{ is a compact subset of } S; \end{array}$
 - $\Diamond \$ (LDP lower bound). For any $\gamma >$ 0, $\delta >$ 0, and $x \in S,$ there exists $\mathit{N}_0 \geq 1$ such that

$$P(\operatorname{dist}(X^N, x) < \delta) \ge \exp\{-N(I(x) + \gamma)\}$$

for any $N \ge N_0$;

 \Diamond (LDP upper bound). For any $\gamma>$ 0, $\delta>$ 0, and s> 0, there exists $N_0\geq 1$ such that

$$P(\operatorname{dist}(X^N, \Phi(s)) \ge \delta) \le \exp\{-N(s - \gamma)\}$$

for any $N \geq N_0$.

Process-level large deviations of μ^N

Theorem (Léonard (1995), Borkar and Sundaresan (2012)) Let $\nu_N \rightarrow \nu$ weakly. Then $\mu_{\nu_N}^N$ satisfies the LDP on $D([0, T], M_1(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot|\nu)$ defined as follows. If $\mu_0 = \nu$ and $[0, T] \ni t \mapsto \mu_t \in M_1(\mathcal{Z})$ is absolutely continuous,

$$S_{[0,T]}(\mu|\nu) = \int_{[0,T]} \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left\{ \langle \alpha, \dot{\mu}_t - \Lambda^*_{\mu_t} \mu_t \rangle - \sum_{(z,z') \in \mathcal{E}} \tau(\alpha(z') - \alpha(z)) \lambda_{z,z'}(\mu_t) \mu_t(z) \right\} dt,$$

else $S_{[0,T]}(\mu|\nu) = \infty$. Here, $\tau(u) = e^u - u - 1$.

Process-level large deviations of μ^N

Theorem (Léonard (1995), Borkar and Sundaresan (2012)) Let $\nu_N \rightarrow \nu$ weakly. Then $\mu_{\nu_N}^N$ satisfies the LDP on $D([0, T], M_1(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot|\nu)$ defined as follows. If $\mu_0 = \nu$ and $[0, T] \ni t \mapsto \mu_t \in M_1(\mathcal{Z})$ is absolutely continuous,

$$S_{[0,T]}(\mu|\nu) = \int_{[0,T]} \sup_{\alpha \in \mathbb{R}^{|\mathcal{Z}|}} \left\{ \langle \alpha, \dot{\mu}_t - \Lambda^*_{\mu_t} \mu_t \rangle - \sum_{(z,z') \in \mathcal{E}} \tau(\alpha(z') - \alpha(z)) \lambda_{z,z'}(\mu_t) \mu_t(z) \right\} dt,$$

else $S_{[0,T]}(\mu|\nu) = \infty$. Here, $\tau(u) = e^u - u - 1$.

Assume that the McKean-Vlasov equation has a unique globally asymptotically stable equilibrium ξ^{*} ∈ M₁(Z).

- Assume that the McKean-Vlasov equation has a unique globally asymptotically stable equilibrium ξ^{*} ∈ M₁(Z).
- Consider the Freidlin-Wentzell quasipotential

 $V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*): \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$

- Assume that the McKean-Vlasov equation has a unique globally asymptotically stable equilibrium ξ^{*} ∈ M₁(Z).
- Consider the Freidlin-Wentzell quasipotential

 $V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*): \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

V is a natural candidate rate function for the family {℘^N, N ≥ 1}.

- Assume that the McKean-Vlasov equation has a unique globally asymptotically stable equilibrium ξ^{*} ∈ M₁(Z).
- Consider the Freidlin-Wentzell quasipotential

 $V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*): \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$

- V is a natural candidate rate function for the family {℘^N, N ≥ 1}.
- Small noise diffusions (Freidlin and Wentzell (1984)), finite-state mean-field models (Borkar and Sundaresan (2012)), reaction-diffusion equations (Sowers (1992), Cerrai and Röckner (2004)), stochastic wave equation (Martirosyan (2017)).

Consider the non-interacting MAC system

The stationary law of each particle is

$$\xi^*(z) = rac{\lambda_b}{\lambda_f + \lambda_b} \left(rac{\lambda_f}{\lambda_f + \lambda_b}
ight)^z, \, z \in \mathcal{Z}.$$

Consider the non-interacting MAC system

The stationary law of each particle is

$$\xi^*(z) = rac{\lambda_b}{\lambda_f + \lambda_b} \left(rac{\lambda_f}{\lambda_f + \lambda_b}
ight)^z, \, z \in \mathcal{Z}.$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

• \wp^N is the law of $\frac{1}{N} \sum_{n=1}^N \delta_{Y_n}$, where $\{Y_n\}$ are i.i.d. ξ^* . By Sanov's theorem, $\{\wp^N, N \ge 1\}$ satisfies the LDP with rate function $H(\cdot ||\xi^*)$.

Consider the non-interacting MAC system

The stationary law of each particle is

$$\xi^*(z) = rac{\lambda_b}{\lambda_f + \lambda_b} \left(rac{\lambda_f}{\lambda_f + \lambda_b}
ight)^z, \, z \in \mathcal{Z}.$$

• \wp^N is the law of $\frac{1}{N} \sum_{n=1}^N \delta_{Y_n}$, where $\{Y_n\}$ are i.i.d. ξ^* . By Sanov's theorem, $\{\wp^N, N \ge 1\}$ satisfies the LDP with rate function $H(\cdot ||\xi^*)$.

• Let
$$\iota(z) = z$$
, $\vartheta(z) = z \log z$.

• If $\xi \in M_1(\mathcal{Z})$ is such that $\langle \xi, \iota \rangle < \infty$ and $\langle \xi, \vartheta \rangle = \infty$, then $V(\xi) = \infty$ but $H(\xi || \xi^*) < \infty$.

Consider the non-interacting MAC system

The stationary law of each particle is

$$\xi^*(z) = rac{\lambda_b}{\lambda_f + \lambda_b} \left(rac{\lambda_f}{\lambda_f + \lambda_b}
ight)^z, \, z \in \mathcal{Z}.$$

▶ \wp^N is the law of $\frac{1}{N} \sum_{n=1}^N \delta_{Y_n}$, where $\{Y_n\}$ are i.i.d. ξ^* . By Sanov's theorem, $\{\wp^N, N \ge 1\}$ satisfies the LDP with rate function $H(\cdot ||\xi^*)$.

• Let
$$\iota(z) = z$$
, $\vartheta(z) = z \log z$.

• If $\xi \in M_1(\mathcal{Z})$ is such that $\langle \xi, \iota \rangle < \infty$ and $\langle \xi, \vartheta \rangle = \infty$, then $V(\xi) = \infty$ but $H(\xi || \xi^*) < \infty$.

► In particular, $V \neq H(\cdot || \xi^*)$.

Assumptions:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

Assumptions:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for each $\xi \in M_1(\mathcal{Z})$.

The functions (z + 1)λ_{z,z+1}(·), z ∈ Z, and λ_{z,0}(·), z ∈ Z \ {0}, are uniformly Lipschitz continuous on M₁(Z).

Assumptions:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions (z + 1)λ_{z,z+1}(·), z ∈ Z, and λ_{z,0}(·), z ∈ Z \ {0}, are uniformly Lipschitz continuous on M₁(Z).
- There is a unique globally asymptotically stable equilibrium ξ* for the McKean-Vlasov equation

$$\dot{\mu}_t = \Lambda^*_{\mu_t} \mu_t, \ \mu_0 = \nu.$$

Assumptions:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions (z + 1)λ_{z,z+1}(·), z ∈ Z, and λ_{z,0}(·), z ∈ Z \ {0}, are uniformly Lipschitz continuous on M₁(Z).
- There is a unique globally asymptotically stable equilibrium ξ* for the McKean-Vlasov equation

$$\dot{\mu}_t = \Lambda^*_{\mu_t} \mu_t, \ \mu_0 = \nu.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Under the above assumptions, the family $\{\wp^N, N \ge 1\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

► Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

(ロ)、(型)、(E)、(E)、 E) の(()

Since V has compact level sets, it cannot be continuous.

▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).

▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi: \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all N.

- ▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi : \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all N.
 - The process-level uniform LDP for {\(\mu_\nu\)^N\)} over compact subsets of \(M_1(\mathcal{Z})\).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ► We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi : \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all N.
 - The process-level uniform LDP for {\(\mu_\nu\)^N\)} over compact subsets of \(M_1(\mathcal{Z}).\)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► A continuity property of *V*:

- Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ► We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi : \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all *N*.
 - The process-level uniform LDP for {\(\mu_\nu\)^N\)} over compact subsets of \(M_1(\mathcal{Z})\).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.

- ▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- ▶ Since *V* has compact level sets, it cannot be continuous.
- ► We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi : \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all *N*.
 - The process-level uniform LDP for {\(\mu_\nu\)^N\)} over compact subsets of \(M_1(\mathcal{Z})\).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.
- The strong Markov property of μ^N .

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_{\nu}^{N}\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_{1}(\mathcal{Z})$ if

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_{\nu}^N\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_1(\mathcal{Z})$ if

♦ for each $K \subset M_1(\mathcal{Z})$ compact and s > 0, $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], M_1(\mathcal{Z}))$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_{\nu}^N\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_1(\mathcal{Z})$ if

- ♦ for each $K \subset M_1(\mathcal{Z})$ compact and s > 0, $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], M_1(\mathcal{Z}))$;
- $\Diamond\;$ for any $\gamma>$ 0, $\delta>$ 0, s> 0 and $\textit{A}\in\mathcal{A}$, there exists $\textit{N}_{0}\geq1$ such that

$$P_{\nu}(\mathsf{dist}(\mu_{\nu}^{\mathsf{N}},\varphi)<\delta)\geq \exp\{-\mathsf{N}(S_{[0,T]}(\varphi|\nu)+\gamma)\},$$

for all $\nu \in A$, $\varphi \in \Phi_{\nu}(s)$ and $N \ge N_0$;

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_{\nu}^N\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_1(\mathcal{Z})$ if

- ♦ for each $K \subset M_1(\mathcal{Z})$ compact and s > 0, $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], M_1(\mathcal{Z}))$;
- \Diamond for any $\gamma > 0, \delta > 0, s > 0$ and $A \in \mathcal{A}$, there exists $N_0 \ge 1$ such that

$$P_{\nu}(\mathsf{dist}(\mu_{\nu}^{\mathsf{N}},\varphi) < \delta) \geq \exp\{-\mathsf{N}(S_{[0,T]}(\varphi|\nu) + \gamma)\},\$$

for all $\nu \in A$, $\varphi \in \Phi_{\nu}(s)$ and $N \ge N_0$;

 $\Diamond \ \ \mbox{for any} \ \gamma>0, \delta>0, s_0>0 \ \mbox{and} \ \ A\in \mathcal{A}, \ \mbox{there exists} \ \ N_0\geq 1 \ \ \mbox{such that}$

$$\mathcal{P}_{
u}(\mathsf{dist}(\mu^{\mathcal{N}}_{
u}, \Phi_{
u}(s)) \geq \delta) \leq \exp\{-\mathcal{N}(s-\gamma)\},$$

for all $\nu \in A$, $s \leq s_0$ and $N \geq N_0$.

• μ_{ν}^{N} : process starting from ν . Indexed by two parameters.

Definition

 $\{\mu_\nu^N\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A}\subset M_1(\mathcal{Z})$ if

- ♦ for each $K \subset M_1(\mathcal{Z})$ compact and s > 0, $\mathcal{K} = \bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D([0, T], M_1(\mathcal{Z}))$;
- $\Diamond\;$ for any $\gamma>$ 0, $\delta>$ 0, s> 0 and $\textit{A}\in\mathcal{A}$, there exists $\textit{N}_{0}\geq1$ such that

$$\mathcal{P}_{
u}(ext{dist}(\mu_{
u}^{\mathcal{N}},arphi)<\delta)\geq \exp\{-\mathcal{N}(\mathcal{S}_{[0,T]}(arphi|
u)+\gamma)\},$$

for all $\nu \in A$, $\varphi \in \Phi_{\nu}(s)$ and $N \ge N_0$;

 $\Diamond \;\;$ for any $\gamma>0, \delta>0, s_0>0$ and ${\it A}\in {\cal A},$ there exists ${\it N}_0\geq 1$ such that

$$\mathcal{P}_{
u}(\mathsf{dist}(\mu_{
u}^{\mathcal{N}}, \Phi_{
u}(s)) \geq \delta) \leq \exp\{-\mathcal{N}(s-\gamma)\},$$

for all $\nu \in A$, $s \leq s_0$ and $N \geq N_0$.

• We can show that $\{\mu_{\nu}^{N}\}$ satisfies the uniform LDP over the class of compact subsets of $M_{1}(\mathcal{Z})$.

Recall the transition graph:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finiteness of V:
 V(ξ) < ∞ if and only if ⟨ξ, ϑ⟩ < ∞.

Recall the transition graph:

Finiteness of V:

• $V(\xi) < \infty$ if and only if $\langle \xi, \vartheta \rangle < \infty$.

We can construct a piecewise constant-velocity trajectory φ from ξ* to ξ via δ₀ such that S_[0,T](φ|ξ*) < ∞.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Recall the transition graph:

Finiteness of V:

• $V(\xi) < \infty$ if and only if $\langle \xi, \vartheta \rangle < \infty$.

We can construct a piecewise constant-velocity trajectory φ from ξ* to ξ via δ₀ such that S_[0,T](φ|ξ*) < ∞.</p>

Continuity of V:

• If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$, then $V(\xi_n) \to V(\xi)$.

Recall the transition graph:

Finiteness of V:

• $V(\xi) < \infty$ if and only if $\langle \xi, \vartheta \rangle < \infty$.

We can construct a piecewise constant-velocity trajectory φ from ξ* to ξ via δ₀ such that S_[0,T](φ|ξ*) < ∞.</p>

Continuity of V:

• If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$, then $V(\xi_n) \to V(\xi)$.

Construct a small-cost trajectory connecting ξ_n to ξ.

Proof sketch: Lower bound

℘^N(nbd(ξ)) ≥ ½P(μ^N_{nbd(ξ*)} ∈ nbd(φ)) ≥ exp{-N(V(ξ) + γ)}.
 The second inequality uses the uniform LDP over compact subsets of M₁(Z).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof sketch: Upper bound

$$\begin{split} \wp^{N}(\sim \operatorname{nbd}(\Phi(s))) \\ &\leq \exp\{-Ns\} + P(\mu_{\Phi(s)}^{N}(T) \notin \operatorname{nbd}(\Phi(s)) \\ &\leq \exp\{-Ns\} \\ &+ P(\mu_{\Phi(s)}^{N} \text{ does not hit } \operatorname{nbd}(\xi^{*})) \\ &+ P(\mu_{\operatorname{nbd}(\xi^{*})}^{N} \in \operatorname{nbd}(\varphi)) \\ &\leq \exp\{-N(s-\gamma)\} \end{split}$$

- The first inequality uses exponential tightness.
- The second inequality uses the continuity of V under the convergence of
 θ-moments, and the strong Markov property.
- ► The third inequality uses the uniform LDP over compact subsets of M₁(Z).

- Summary: LDP for the invariant measure in countable-state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► A sufficient condition for it to be the rate function.

- Summary: LDP for the invariant measure in countable-state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Summary: LDP for the invariant measure in countable-state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A generalized quasipotential.

- Summary: LDP for the invariant measure in countable-state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.
 - A generalized quasipotential.

Reference: arXiv:2110.12640

Acknowledgment: Vannevar Bush Faculty Fellowship

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●