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Section 1

Model description and the mean-field limit



A mean-field SIS epidemic model

I Interacting system with N individuals

I Each node’s state space: Z = {S, I}

I Transitions:

S I

1

Bs(1-s)

I Dynamics depends on the “mean field”. Global interaction.
µN(t) = s = fraction of nodes in infectious state

I Transition rate from S to I or I to S depends on the fraction of
nodes in the infectious state. λS,I (µN(t)) = βs(1− s) and
λI ,S(µN(t)) = 1.



Reversible versus nonreversible dynamics

I (Reversible) Gibbsian system

I Example: Heat bath dynamics

I State space Z = {0, 2, . . . , r − 1}

I Configuration of the N particles x = (x1, . . . , xN)

I E(µN): Energy of a configuration x = (x1, . . . , xN) with mean µN

I An i to j transition takes µN to µN − 1
N
δi + 1

N
δj

λij(µN) =
e−NE(µN )

e−NE(µN− 1
N
δi+

1
N
δj ) + e−NE(µN )

I In general, λij(·) may result in nonreversible dynamics

I Weak interaction



Wireless Local Area Network (WLAN) interactions
DCF 802.11 countdown and its CTMC caricature

I N particles accessing the common medium in a wireless LAN

I Each particle’s state space: Z = {0, 1, · · · , r − 1}

I Transitions:

0 1 i i + 1 r - 1

I State = # of transmission attempts for head-of-line packet
I r : Maximum number of transmission attempts before discard

I Coupled dynamics: Transition rate for success or failure depends on
empirical distribution µN(t) of particles across states



Example transition rates

I Matrix of rates: Λ(·) = [ λi,j(ξ) ]i,j∈Z .

I Assume three states, Z = {0, 1, 2} or r = 3.

I Aggressiveness of the transmission c = (c1, c2, c3).

I Conventional wisdom, double the waiting time after every failure,
ci = ci−1/2.

I For µ, the empirical measure of a configuration, the rate matrix is

Λ(µ) =

 −(·) c1(1− e−〈µ,c〉) 0
c2e
−〈µ,c〉 −(·) c2(1− e−〈µ,c〉)

c3e
−〈µ,c〉 0 −(·)

 .

I “Activity” coefficient a = 〈µ, c〉.
Probability of no activity = e−a.



Mean-field interaction and dynamics

I Configuration XN(t) = (x1(t), . . . xN(t)).

I Empirical measure µN(t): Fraction of particles in each state

I A particle transits from state i to state j at time t with rate
λi,j(µN(t))



Studying the time-evolutions

I Tag a particle, say n1. Study X
(N)
n1 (·). Marginal at n1.

I Tag two particles, say n1, n2. Study (X
(N)
n1 (·),X (N)

n2 (·)), marginals at
n1, n2.

I Study µN(·).



The Markov processes, big and small

I (X
(N)
n (·), 1 ≤ n ≤ N), the trajectory of all the n nodes, is Markov

I Study µN(·) instead, also a Markov process
Its state space size is the set of empirical probability measures on N
particles with state space Z.

I Then try to draw conclusions on the original process.



The smaller Markov process µN(·)

I A Markov process with state space being the set of empirical
measures of N nodes.

I This is a measure-valued flow across time.

I The transition ξ  ξ + 1
N ej −

1
N ei occurs at rate Nξ(i)λi,j(ξ).

I For large N, changes are small, O(1/N), at higher rates, O(N).
Individuals are collectively just about strong enough to influence the
evolution of the measure-valued flow.

I Fluid limit : µN converges to a deterministic limit given by an ODE.



The conditional expected drift in µN

I Recall Λ(·) = [ λi,j(·) ] without diagonal entries. Then

lim
h↓0

1

h
E [µN(t + h)− µN(t) | µN(t) = ξ] = Λ(ξ)T ξ

with suitably defined diagonal entries.



An interpretation

I The rate of change in the kth component is made up of increase∑
i :i 6=k

(Nξi ) · λi,k(ξ) · (+1/N)

I and decrease
(Nξk)

∑
i :i 6=k

λk,i (ξ)(−1/N).

I Put these together:∑
i :i 6=k

ξiλi,k(ξ)− ξk
∑
i :i 6=k

λk,i (ξ) =
∑
i

ξiλi,k(ξ) = (Λ(ξ)T ξ)k .



The conditional expected drift in µN

I Recall Λ(·) = [ λi,j(·) ] without diagonal entries. Then

lim
h↓0

1

h
E [µN(t + h)− µN(t) | µN(t) = ξ] = Λ(ξ)T ξ

with suitably defined diagonal entries.

I Anticipate that µN(·) will solve (in the large N limit)

µ̇(t) = Λ(µ(t))T µ(t), t ≥ 0 [McKean-Vlasov equation]

µ(0) = ν

I Nonlinear ODE.



ODE preliminaries

µ̇(t) = F (µ(t)), t ≥ 0

µ(0) = ν

I C ([0,T ],Rr ): space of continuous functions from [0,T ] to Rr .

I Can define a norm and a distance on this space:

‖µ‖ = sup
t∈[0,T ]

‖µ(t)‖

dT (µ, ξ) = ‖µ− ξ‖.

I C ([0,∞),Rr ) with metric d(µ, ξ) =
∑∞

T=1 2−T (dT (µ|T , ξ|T ) ∧ 1).

I An ODE is well-posed if
I For each ν ∈ Rr , the ODE has a unique solution µ(·) on [0,∞)
I The mapping ν 7→ µ(·) ∈ C([0,∞),Rr ) is continuous.

Theorem
If F is Lipschitz, then the ODE is well-posed, and the solution can be
written as µ(t) = ν +

∫ t

0
F (µ(s)) ds for t ∈ R+.



Convergence in probability

I µN(·) a sample path (random) while µ(·) some deterministic or
random path

I Fix T . View µN(·) (interpolated) and µ(·) as elements of
C ([0,T ],M1(Z)).

I We say µN(·)→ µ(·) if for every ε > 0, we have

Pr{dT (µN(·), µ(·)) > ε} → 0 as N →∞

I This is the same as asking that the path µN(·) remains within any ε-
tube of µ(·) with probability approaching 1 as N →∞.



A limit theorem

Theorem
Suppose that the initial empirical measure µN(0)

p→ ν, where ν is
deterministic.

Assume each λi,j(·) is Lipschitz in its argument. Let µ(·) be the solution
to the McKean-Vlasov dynamics with initial condition µ(0) = ν.

Then µN(·) p→ µ(·).

Technicalities:

I Fix T > 0 and ε > 0. We will argue

Pr{dT (µN , µ) > ε} ≤ Pr{‖µN(0)− µ(0)‖ > ε/(2eMT )}
+C1 exp{−NTλh(ε/(C2Te

MT ))}

where M is the Lipschitz constant of the driving function, λ is the
max of the transition rates, and
h(t) = (1 + t) ln(1 + t)− t, t > −1.



Back to the individual nodes

I Let µ(·) be the solution to the McKean-Vlasov dynamics

I Choose a node uniformly at random, and tag it.

I µN(·) is the distribution for the state of the tagged node at time t.

I As N →∞, the limiting distribution is then µ(t)



Joint evolution of tagged nodes

Theorem
Fix t, k. Tag k nodes at random.

Let (X
(N)
n (0), 1 ≤ n ≤ N) be exchangeable and let µN(0)

d→ ν, a fixed
limiting initial condition. Assume all transition rates are Lipschitz
functions. Then

(X (N)
n1 (t), . . . ,X (N)

nk (t))
d→ (U1, . . . ,Uk)

where U1, . . . ,Uk are iid with distribution µ(t).

I If the interaction is only through µN(t), and this converges to a
deterministic µ(t), the transition rates are just λi,j(µ(t)).

I Each of the k nodes is then executing a time-dependent Markov
process with transition rate matrix Λ(µ(t)).

I Asymptotically, no interaction (decoupling). The node trajectories
are (asymptotically) iid (i.e., µ(t)⊗ · · · ⊗ µ(t)).



Stationary regime

I Interest in large time behaviour for a finite N system: limt→∞ µN(t).
If N is large, we really want:

lim
N→∞

[
lim
t→∞

µN(t)
]
.

I Idea: Try to predict where the system will settle from the following:

lim
t→∞

[
lim

N→∞
µN(t)

]
= lim

t→∞
µ(t).



A fixed-point analysis

I Solve for the rest point of the dynamical system:
µ̇(t) = Λ(µ(t))Tµ(t), i.e., solve for ξ in

Λ(ξ)T ξ = 0.

I If the solution is unique, say ξ∗, predict that the system will settle
down at ξ∗ ⊗ ξ∗ ⊗ . . .⊗ ξ∗.

I Works very well for the exponential backoff.

I Another example in the next slide



SIS system and herd immunity

I Normalise time so that recovery rate is 1. Assume that the contact
rate is β.

I In this normalisation, β = R0 of the infection.

I The model is µ̇1(t) = βµ1(t)(1− µ1(t))− µ1(t), with µ(0) = ν.

I Rest points ξ∗ solve βξ∗(1− ξ∗)− ξ∗ = 0

I ξ∗ = 0 or ξ∗ = 1− 1/β (herd-immunity).



Issues: A malware propagation example from Benaim and
Le Boudec 2008

I The fixed point is unique, but unstable.
I All trajectories starting from outside the fixed point, and all

trajectories in the finite N system, converge to the stable limit cycle.



A sufficient condition when the method works

Theorem
Assume fully connected graph and Lipschitz rates.

Let µN(0)→ ν in probability.

Let the ODE have a (unique) globally asymptotically stable equilibrium
ξ∗ with every path tending to ξ∗.

Then µN(∞)
d→ ξ∗.

It is not enough to have a unique fixed point ξ∗.
But if that ξ∗ is globally asymptotically stable, that suffices.



A sufficient condition

A lot of effort has gone into identifying when we can ensure a globally
asymptotic stable equilibrium.

Theorem
If c is such that 〈ξ, c〉 < 1 for all ξ, then the rest point ξ∗ of the
dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with c0 < 1.



The case of multiple stable equilibria for the ODE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction in state 0

Fr
ac

tio
n 

in
 s

ta
te

 1

I Different parameters: c = (0.5, 0.3, 8.0).

I There are two stable equilibria.
One near (0.6, 0.4, 0.0) and another near (0, 0, 1).



The case of multiple stable equilibria: metastability
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Fraction of nodes in state 0 is near 0.6 for a long time, but then moves
to 0, and in a sequence of rapid steps.

The reverse move is a lot less frequent.



A selection principle: Preview to the second hour

I If unique globally asymptotically stable equilibrium ξ∗, then

µN(∞)
d→ ξ∗. (Limit law).

I If we encounter multiple stable limit sets, look at probability of a
large deviation.

I Characterise the exponent in

Pr {µN(∞) ∈ neighbourhood of ξ} ∼ exp{−NV (ξ)}.

I The locations {ξ : V (ξ) = 0} should “select” the correct limit set.

I V (ξ) is called a quasipotential (Freidlin-Wentzell).



Quasipotential V (ξ)
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The case of a (unique) globally asymptotically stable equilibrium for the
McKean-Vlasov dynamics: V (ξ∗) = 0.



Quasipotential V (ξ)
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The case of a unique but unstable rest point. V (ξ∗) > 0.

All trajectories converge to the stable limit cycle.



Quasipotential V (ξ)
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The case of two stable equilibria.

The selection is the one that has the deepest shade of blue (V (ξ∗1 ) = 0).



Quasipotential V (ξ)
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A qualitative picture for the case c = (0.5, 0.3, 8.0).

The two stable points are (0.6, 0.4, 0.0) and (0.0, 0.0, 1.0).
The latter is a truer representative of the large time behaviour.



Proofs: First Kurtz’s theorem

Theorem
Suppose that the initial empirical measure µN(0)

p→ ν, where ν is
deterministic.

Assume each λi,j(·) is Lipschitz in its argument. Let µ(·) be the solution
to the McKean-Vlasov dynamics with initial condition µ(0) = ν.

Then µN(·) p→ µ(·).

Technicalities:

I Fix T > 0 and ε > 0. We will argue

Pr{dT (µN , µ) > ε} ≤ Pr{‖µN(0)− µ(0)‖ > ε/(2eMT )}
+C1 exp{−NTλh(ε/(C2Te

MT ))}

where M is the Lipschitz constant of the driving function, λ is the
max of the transition rates, and
h(t) = (1 + t) ln(1 + t)− t, t > −1.



Proofs: Proof of Kurtz’s theorem

I Time change. Let M(·) be a unit rate Poisson point process (PPP).
Then M(

∫ ·
0
λ(s)ds) is a time-inhomogeneous PPP with

instantaneous rate λ(·).
I Let (Mi,j(·))i,j be independent unit-rate PPP.

µN(t) = µN(0) +
∑
i,j

(
δj − δi
N

)
Mi,j

(∫ t

0

NµN(s)(i)λi,j(µN(s))ds

)

= µN(0) +

∫ t

0

F (µN(s))ds +
∑
i,j

(
δj − δi
N

)
M i,j (·)

I Martingale noise M i,j(t) is of the form Mi,j(t)− t
I By triangle inequality and Lipschitz,

‖µN(t)− µ(t)‖ ≤ ‖µN(0)− µ(0)‖+

∫ t

0

‖F (µN(s))− F (µ(s))‖ds + ‖noise‖

≤ ‖µN(0)− µ(0)‖+ M

∫ t

0

‖µN(s))− µ(s)‖ds + ‖noise‖

I Then Poisson concentration and Gronwall.



Proofs: Marginal

X
(N)
n1 (t)

d→ U1 where U1 is a random variable with distribution µ(t).

I Take any bounded test function φ on Z.

I Suffices to show E[φ(X
(N)
n1 (t))]→ E[φ(U1)]

E[φ(X (N)
n1 (t))] = E

[
1

N

N∑
n=1

φ(X (N)
n (t))

]
= E [〈µN(t), φ〉]
→ 〈µ(t), φ〉
= E[φ(U1)]



Proofs: Double marginal

(X
(N)
n1 (t),X

(N)
n2 (t))

d→ (U1,U2), where U1 and U2 are iid ∼ µ(t).

I Take any two bounded test functions φ1 and φ2 on Z.

I Suffices to show E[φ1(X
(N)
n1 (t))φ2(X

(N)
n1 (t)]→ E[φ1(U1)] E[φ2(U2)]

E[φ1(X (N)
n1 (t))φ2(X (N)

n1 (t))]− E[φ1(U1)] E[φ2(U2)]

= E
[
φ1(X (N)

n1 (t))φ2(X (N)
n1 (t))

]
− E

[
2∏

l=1

〈µN(t), φl〉

]

+E

[
2∏

l=1

〈µN(t), φl〉

]
− E [φ1(U1)] E [φ2(U2)]

= E

 1

N(N − 1)

∑
n1 6=n2

φ1(X (N)
n1 (t))φ2(X (N)

n1 (t))


−E

[(
1

N

∑
n1

φ1(X (N)
n1 (t))

)(
1

N

∑
n2

φ2(X (N)
n2 (t))

)]

+E

[
2∏

l=1

〈µN(t), φl〉

]
−

2∏
l=1

〈µ(t), φl〉



Proofs: Globally asymptotically stable equilibrium and
stationary regime

Globally asymptotically stable equilibrium ⇒ µN(∞)
d→ ξ∗.

I πN := Law(µN(0)), invariant measure. Then πN = Law(µN(t))
also.

I Compactness implies subsequential limits πNl
→ π.

I π = π ◦ Φ−1t , under the McKean-Vlasov flow Φt

I Compactness of the space, Liapunov stability, Gronwall implies that
for every ε > 0, there is a T such that ∀t > T , we have support of
(π ◦ Φ−1t ) ⊂ Bε(ξ

∗) for all t > T .

I So support of π is within a ball of ε around ξ∗.

I ε > 0 is arbitrary. So support of π is {ξ∗} and π = δξ∗ , unique.



Section 2

Large deviations of mean-field models
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Recall the mean-field model

▶ N particles. The state of the nth particle is XN
n (t) ∈ Z. The

empirical measure at time t is

µN(t) =
1

N

N∑
n=1

δXN
n (t).

▶ An i → j transition occurs at rate λi ,j(µN(t)).

▶ The McKean-Vlasov equation:

µ̇t = Λ(µt)
Tµt , t ≥ 0.

▶ We will now quantify various rare events associated with
{µN}.



Outline of Section 2

▶ An introduction to large deviations.
▶ Basic definitions, some examples.

▶ Process-level large deviations of the family {µN}.
▶ A change of measure argument.

▶ Large deviations of the invariant measure of µN .



A primer on large deviations



Large deviation principle (LDP)

▶ Let S be a complete and separable metric space. Let
{XN ,N ≥ 1} be a sequence of S-valued random variables.

▶ Roughly, P(XN ∈ A) ∼ exp{−N infx∈A I (x)}.
▶ Here, I : S → [0,∞] is called the rate function.



Large deviation principle (LDP)

Definition
{XN ,N ≥ 1} is said to satisfy the LDP on S with rate function I if

• (Compactness of level sets). For any s ≥ 0,
Φ(s) := {x ∈ S : I (x) ≤ s} is a compact subset of S ;

• (LDP lower bound). For any γ > 0, δ > 0, and x ∈ S , there
exists N0 ≥ 1 such that

P(d(XN , x) < δ) ≥ exp{−N(I (x) + γ)}

for any N ≥ N0;

• (LDP upper bound). For any γ > 0, δ > 0, and s > 0, there
exists N0 ≥ 1 such that

P(d(XN ,Φ(s)) ≥ δ) ≤ exp{−N(s − γ)}

for any N ≥ N0.



Example: Sanov’s theorem

▶ Let S be a Polish space. Let µ be a probability measure on S .

▶ Let X1,X2, . . . ,XN be i.i.d. µ.

▶ Define the empirical measure

µN =
1

N

N∑
n=1

δXn .

▶ This is an M1(S)-valued random
variable.

ν

MN(ω1)

MN(ω2)

▶ By the weak law of large numbers, µN → µ in M1(S) as
N → ∞, in probability.

▶ But there is a positive probability for µN to be close to ν ̸= µ.

Theorem (Sanov)

{µN ,N ≥ 1} satisfies the LDP on M1(S) with rate function
I (·∥µ).



The D-space

▶ Let S be a complete and seperable metric space.
▶ Fix T > 0. Let D([0,T ],S) denote the space of S-valued

functions on [0,T ] that are
▶ Right continuous at each t ∈ [0,T ), and
▶ Possesses left limits at each t ∈ (0,T ].

▶ Examples:
▶ All continuous functions on [0,T ].
▶ Trajectories of a Poisson point process.



The D-space

▶ We can define a distance function on D that takes into
account small time perturbations.

▶ Under this metric, D is a complete and seperable metric space.



Example: LDP on the space of trajectories

▶ Consider the unit rate Poisson point process X (t) for
t ∈ [0,T ].

▶ X is a D([0,T ],R)-valued random variable.



Example: LDP on the space of trajectories

▶ Consider the time-scaled and amplitude-scaled process:
1
NX (Nt).



Example: LDP on the space of trajectories

▶ Consider the time-scaled and amplitude-scaled process:
1
NX (Nt).



Example: LDP on the space of trajectories

▶ Consider the time-scaled and amplitude-scaled process:
1
NX (Nt).



Example: LDP on the space of trajectories

▶ Consider the time-scaled and amplitude-scaled process:
1
NX (Nt).

▶ The process 1
NX (Nt) is a small random perturbation of the

ODE

ẋ(t) = 1, x(0) = 0, t ∈ [0, 1].



Example: LDP on the space of trajectories

▶ Question: probability that 1
NX (Nt)

tracks a given function φ?

▶ One can show that { 1
NX (Nt),N ≥ 1} satisfies the LDP on

D([0,T ],R) with rate function

S(φ) =

∫
[0,T ]

τ∗(φ̇(t)− 1)dt,

if t 7→ φ(t) is absolutely continuous, increasing, and φ(0) = 0;
S(φ) = ∞ otherwise.

▶ Here,

τ∗(x) =

{
(x + 1) log(x + 1)− x , if x ≥ −1,
∞, if x < −1.



A closer look at the rate function

▶

S(φ) =

∫
[0,T ]

τ∗(φ̇(t)− 1)dt.

▶ τ∗ is the convex dual of τ(u) = eu − u − 1, u ∈ R;

τ∗(t) = sup
u
(ut − τ(u)), t ∈ R.

▶ So,

S(φ) =

∫
[0,T ]

sup
u
(u(φ̇(t)− 1)− τ(u))dt.

▶ Such variational forms will appear later.



Contraction principle

▶ S ,T are metric spaces. f : S → T is continuous.

▶ {XN}s are S-valued random variables. Define YN = f (XN).

Theorem (Contraction Principle)

If {XN} satisfies the LDP with rate function I , then {YN} satisfies
the LDP with rate function

J(y) = inf
x∈S :y=f (x)

I (x).



A new LDP from change of measure

▶ Let {PN} satisy the LDP with rate function I .

▶ Let QN be such that

dQN

dPN
(x) = exp{Nf (x)},

for some f : S → R, bounded and continuous.

▶ Additionally, suppose that {QN} is exponentially tight: Given
M > 0, there exists a compact set KM such that
QN(K

c
M) ≤ exp{−NM} for all N.

▶ Then, {QN} satisfies the LDP with rate function I (x)− f (x).



A new LDP from change of measure

▶ Lower bound: For x ∈ S and δ > 0,

QN(d(XN , x) < δ) = EQN (1{XN∈B(x ,δ)})

= EPN (exp{Nf (XN)}1{XN∈B(x ,δ)})

≥ exp{N(f (x)− ε)}PN(XN ∈ B(x , δ))

≥ exp{−N(I (x)− f (x) + 2ε)}.

▶ Upper bound: For a closet set F ,

QN(F ) ≤ QN(K
c
M) + QN(F ∩ KM)

≤ exp{−NM}+ QN(F ∩ KM).

▶ Since F ∩ KM is compact, we can cover it using a finite
number of balls. For the ith ball,

QN(B(xi , δ)) ≤ exp{−N(I (x)− f (x)− ε)}.



Varadhan’s lemma

Theorem
Let f : S → R be bounded and continuous. Suppose that {XN}
satisfies the LDP with rate function I . Then

lim
N→∞

1

N
log E (exp{Nf (XN)}) = sup

x∈S
(f (x)− I (x)).

▶ By the LDP,
E (exp{Nf (XN)}1{XN∼x}) ∼ exp {Nf (x)} exp {−NI (x)}.

▶ The leading terms in the expectation are those x ∈ S for
which f (x)− I (x) is the largest.



Large deviations of the empirical measure process



Recall the empirical measure process

▶ µN(t) → µN(t) +
δj
N − δi

N at rate NµN(t)(i)λi ,j(µN(t)).

▶ Recall the McKean-Vlasov equation:

µ̇t = Λ(µt)
Tµt , t ≥ 0.

▶ From Section 1, if µN(0) → ν in M1(Z), then µN(·) → µ(·)
in D([0,T ],M1(Z)), in probability.

▶ We now present the large deviations of µN .

ν

McKean-Vlasov trajectory

Another path µ.
Small probability.



Large deviations of µN

Theorem
Let µN(0) → ν in M1(Z). Then µN satisfies the LDP on
D([0,T ],M1(Z)) with rate function S[0,T ](·|ν) defined as follows.
If µ0 = ν and [0,T ] ∋ t 7→ µt ∈ M1(Z) is absolutely continuous,

S[0,T ](µ|ν) =
∫
[0,T ]

sup
α∈R|Z|

{
⟨α, µ̇t − Λ(µt)

Tµt⟩

−
∑

(i ,j)∈E

τ(α(j)− α(i))λi ,j(µt)µt(i)

}
dt,

else S[0,T ](µ|ν) = ∞. Here, τ(u) = eu − u − 1.



An interpretation of the rate function

▶ Consider a path µ̇t = G (t)Tµt .

▶ In a small time around t, for an i → j transition,
▶ The usual rate is Bernoulli(p = λi,j(µ(t))dt).
▶ The new rate is Bernoulli(q = Gi,j(t)dt).

▶ By Sanov’s theorem, the infinitesimal cost of this change is

I (Bernoulli(q)∥Bernoulli(p)) =
(
q log

q

p
− q + p

)
.

▶ Accumulate these costs over [0,T ] to get the rate function.



LDP for {µN} – proof sketch

▶ Consider a system of non-interacting particles.
▶ λi,j(ξ) = 1 for all ξ ∈ M1(Z) and (i , j) ∈ E .

▶ Define the empirical measure on paths

µN =
1

N

N∑
n=1

δXN
n
.

▶ This is a M1(D([0,T ],Z)) valued random variable.
▶ µN(t) = µ̄ ◦ π−1

t , where πt is the projection mapping

D([0,T ],Z) ∋ φ 7→ φ(t) ∈ M1(Z).

▶ Let P̄z denote the law of a particle starting at z .

▶ If XN
n (0) = z for all n, then by Sanov’s theorem, {µN}

satisfies the LDP with rate function Q 7→ I (Q∥Pz).



LDP for {µN} – proof sketch

▶ When µN(0) → ν, then a generalisation of Sanov’s theorem
gives the LDP for {µN} with rate function

J(Q) = sup
f ∈Cb(D)

[∫
D
fdQ −

∑
z∈Z

ν(z) log

∫
D
ef dPz

]

(Dawson and Gärtner, 1987).

▶ In particular, when ν = δz , J(Q) = I (Q∥P̄z).

▶ By Jensen’s inequality, J(Q) ≥ I (Q∥
∑

z ν(z)P̄z).



A change of measure

▶ Consider two probability measures: P ∼ Poisson(λ1), and
Q ∼ Poisson(λ2).

▶ We have

P(k) =
λk
1 exp {−λ1}

k!
, k ≥ 0,

and similarly Q(k).

▶ So,

Q(k)

P(k)
=

(
λ2

λ1

)k

exp{−(λ2 − λ1)}

= exp

{
k log

(
λ2

λ2

)
− (λ2 − λ1)

}
.



A change of measure

▶ More generally, let P (resp. Q) be the law of the Poisson
point process with rate λ1 (resp. λ2).

▶ Both P and Q are probability measures on D([0,T ],Z+).

▶ By Girsanov’s theorem,

dQ

dP
(x) = exp

 ∑
0≤t≤T

1{xt ̸=xt−} log

(
λ2

λ1

)
−
∫
[0,T ]

(λ2 − λ1)dt

 ,

for x ∈ D([0,T ],Z+).



LDP for {µN} – proof sketch

▶ Let PN (resp. PN) be the law of the interacting
(resp. non-interacting) system.

▶ By Girsanov’s theorem,

dPN

dPN

(Q) = exp{Nh(Q)},Q ∈ M1(D),

where,

h(Q) =

∫
D
h1(x ,Q)Q(dx),

h1(x ,Q) =
∑

0≤t≤T

1{xt ̸=xt−} log λxt−,xt (Q(t−))

−
∫ ∑

j :(xt−,j)∈E

(λxt−,j(Q(t−))− 1)dt.



LDP for {µN} – proof sketch

▶ However, h is neither bounded nor continuous.

▶ Consider a subspace of M1(D):

M1,φ(D) =

{
Q ∈ M1(D) :

∫
D
φdQ < ∞

}
,

where, φ : D → R+ is the function φ(x) =
∑

0≤t≤T 1{xt ̸=xt−}.

▶ Show that h is continuous at all points in M1,φ(D).

▶ Then show that {γN} satisfies the LDP with rate function
Q 7→ J(Q)− h(Q).

▶ By the contraction principle, {µN(t)} satisfies the LDP with
rate function S[0,T ](·|ν).



Large deviations in the stationary regime



The unique attractor case

▶ Recall the empirical measure process µN . Let ℘N be its
unique invariant probability measure.

▶ ℘N is the law of µN(∞). It is a probability measure on
M1(Z).

▶ Recall the McKean-Vlasov equation

µ̇t = Λ(µt)
Tµt , t ≥ 0.

▶ Suppose that ξ∗ is the unique globally asymptotically stable
equilibrium of the McKean-Vlasov equation.

▶ From Section 1, µN(∞) converges to ξ∗ in distribution as
N → ∞.

▶ We now study the large deviations of {℘N}.



LDP for the terminal time

▶ Consider the random variable µN(T ).

▶ The mapping

D([0,T ],M1(Z)) ∋ φ 7→ φ(T ) ∈ M1(Z)

is continuous.

▶ Let µN(0) → ν. By the contraction principle, {µN(T )}
satisfies the LDP with rate function

ST (ξ|ν) = inf{S[0,T ](µ|ν) : µ(0) = ν, µ(T ) = ξ}.

ν ξ



LDP for the joint law (µN(0), µN(T ))

▶ So far, we assumed µN(0) → ν.

▶ Suppose we start at stationarity, i.e., the law of µN(0) is ℘N .
Then the law of µN(T ) is also ℘N .

▶ Consider (µN(0), µN(T )).

▶ Suppose that ℘N satisfies the LDP with rate function V .
Then, under some conditions, the joint law (µN(0), µN(T ))
satisfies the LDP with rate function

(ν, ξ) 7→ V (ν) + ST (ξ|ν)



A recursion for the rate function

▶ Suppose that ℘N satisfies the LDP with rate function V .

▶ We have that (µN(0), µN(T )) satisfies the LDP with rate
function

(ν, ξ) 7→ V (ν) + ST (ξ|ν)

▶ On one hand, by the contraction principle, {µN(T )} satisfies
the LDP with rate function

ξ 7→ inf
ν∈M1(Z)

[V (ν) + ST (ξ|ν)]

▶ On the other hand, since the law of µN(T ) is ℘N , we have

V (ξ) = inf
ν∈M1(Z)

[V (ν) + ST (ξ|ν)] for all T > 0.

▶ Is there a unique V that satisfies this?



Large deviations of ℘N

Theorem
The family {℘N} satisfies the LDP on M1(Z) with rate function

V (ξ) = inf
T>0

ST (ξ|ξ∗).

Further, there exists a trajectory µ̂ such that µ̂(t) → ξ∗ as
t → −∞, µ̂(0) = ξ, and

V (ξ) = S(−∞,0](µ̂|ξ∗).

ξ

ξ∗



Large deviations of ℘N – proof sketch

▶ Show that V (ξ∗) = 0.

▶ Then,

V (ξ) ≤ V (ξ∗) + ST (ξ|ξ∗) for all T > 0.

▶ So,

V (ξ) ≤ inf
T>0

ST (ξ|ξ∗).



Large deviations of ℘N – proof sketch

▶ For T > 0, show that the infimum in

inf
ν∈M1(Z)

[V (ν) + ST (ξ|ν)]

is attained.

▶ For each ν, ξ and T > 0, there is an optimal path µ̂ from ν
to ξ, i.e., ST (ξ|ν) = S[0,T ](µ̂|ν).

▶ So,

V (ξ) = V (µ̂(−mT )) + SmT (ξ|µ̂(−mT )).

▶ Argue that µ̂(−mT ) → ξ∗ as m → ∞.

▶ By the lower semicontinuity of V , and V (ξ∗) = 0, we have

V (ξ) ≥ S(−∞,0](µ̂|ξ∗).



The general case – multiple equilibria

▶ The Freidlin-Wentzell quasipotential V on M1(Z).

▶ P(µN(∞) ∼ ξ) ∼ exp{−NV (ξ)}.
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The general case – some notation

▶ Assumptions on the McKean-Vlasov equation: There exists a
finite number of compact sets K1,K2, . . . ,Kl such that
▶ Every equilibrium of the McKean-Vlasov equation lies

completely in one of the compact sets Ki .
▶ No cost of movement within Ki . Positive cost to go out of (or

come into) Ki .

&%
'$

����s s

sK3

K4

K1 K2

K5

-

�
-

Ṽ (K1,K2)

▶ Ṽ (Ki ,Kj) = inf{S[0,T ](φ|φ0) : φ0 ∈ Ki , φT ∈ Kj , φt /∈
∪i ′ ̸=i ,jKi ′ ,T > 0} (communication cost from Ki to Kj).



Approximation of µN using a discrete chain
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Approximation of µN using a discrete chain
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▶ τn: hitting time of µN in a given neighbourhood of Ki ’s.

▶ Hitting time chain: ZN
n = µN(τn), n ≥ 1.

▶ To quantify the transitions between Ki ’s, we need large
deviation estimates of µN uniformly with respect to the initial
condition.



Uniform large deviations

▶ µν
N : process starting from ν. Indexed by two parameters.

Definition
{µν

N} is said to satisfy the uniform LDP over a class of subsets
A ⊂ M1(Z) if
▶ for each K ⊂ M1(Z) compact and s > 0, K =

⋃
ν∈K Φν(s) is a

compact subset of D([0,T ],M1(Z));
▶ for any γ > 0, δ > 0, s > 0 and A ∈ A, there exists N0 ≥ 1 such that

Pν(ρ(µ
ν
N , φ) < δ) ≥ exp{−N(S[0,T ](φ|ν) + γ)},

for all ν ∈ A, φ ∈ Φν(s) and N ≥ N0;
▶ for any γ > 0, δ > 0, s0 > 0 and A ∈ A, there exists N0 ≥ 1 such

that

Pν(ρ(µ
ν
N ,Φν(s)) ≥ δ) ≤ exp{−N(s − γ)},

for all ν ∈ A, s ≤ s0 and N ≥ N0.

▶ Theorem: {µν
N} satisfies the uniform LDP over M1(Z).



One step transition probability of ZN

Lemma
Given ε > 0, there exists δ > 0 such that the one-step transition
probability of the chain ZN satisfies

exp{−N(Ṽ (Ki ,Kj) + ε)} ≤ P(B(Ki , δ),B(Kj , δ))

≤ exp{−N(Ṽ (Ki ,Kj)− ε)}

for all large enough N.

▶ Upon exit from Ki , µN is most likely to visit Kj that attains
minj ′ Ṽ (Ki ,Kj ′) (= Ṽ (Ki )).



One step transition probability of ZN – proof sketch

▶ Lower bound:
▶ By the definition of Ṽ (Ki ,Kj), given ε > 0, there exists a

trajectory φ from Ki to Kj such that

S[0,T ](φ|Ki ) ≤ Ṽ (Ki ,Kj) + ε.
▶ Then, using the uniform LDP for {µN},

P(B(Ki , δ),B(Kj , δ)) ≥ PKi (µN ∈ nbhd(φ))

≥ exp{−N(Ṽ (Ki ,Kj) + ε)}.

▶ Upper bound:
▶ Let τ1 be the hitting time of ∪Kl .
▶ Given M > 0, we can find T1 > 0 such that

PKi (τ1 > T1) ≤ exp{−NM}.
▶ Let A = {φ : φ0 ∈ Ki , φT1 ∈ Kj ,S[0,T ](φ|Ki ) ≤ Ṽ (Ki ,Kj)− ε}.
▶ Then using the uniform LDP for {µN},

P(B(Ki , δ),B(Kj , δ)) ≤ PKi (τ1 ≥ T1) + PKi (dist(µN ,A) ≥ δ)

≤ exp{−NM}+ exp{−N(Ṽ (Ki ,Kj)− ε)}.



The Markov chain tree theorem

▶ Consider an irreducible Markov chain on L = {1, 2, . . . , l} with
transition probaiblity matrix P.

▶ An i-graph G (i) is a directed graph on L such that
▶ There is exactly one outgoing arrow from every j ∈ L.
▶ There are no closed cycles.

▶ For an i-graph g , let π(g) =
∏

(i ,j)∈g P(i , j).

▶ Let W (i) =
∑

g∈G(i) π(g).

▶ Then,

W (i)∑
j W (j)

, j ∈ L,

is the stationary distribution of the Markov chain.



The invariant measure of ZN

▶ Recall the one-step transition probabilities of ZN :

P(Ki ,Kj) ∼ exp{−NṼ (Ki ,Kj)}.

▶ Let W (Ki ) = ming∈G(i)

∑
(m,n)∈g Ṽ (Km,Kn).

▶ By the Markov chain tree theorem, the the invariant measure
of ZN satisfies

γN(Ki ) ∼ exp{−N(W (i)−min
j

W (j))}.

▶ Reconstruct ℘N from γN and show that

℘N(Ki ) ∼ exp{−N(W (i)−min
j

W (j))}.



Large deviations of the invariant measure

Theorem
In the case of multiple equilibria, {℘N} satisfies the LDP with rate
function

V (ξ) = min
1≤i≤l

[W (Ki ) + Ṽ (Ki , ξ)]− min
1≤i≤l

W (Ki )
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Some applications of the LDP

▶ Exit times:
▶ The mean exit time from Ki is of the order exp{NṼ (Ki )},

where Ṽ (Ki ) = minj Ṽ (Ki ,Kj).

▶ Mixing time of µN :
▶ There is a constant Λ > 0 such that µN mixes well when the

time is of the order exp{NΛ}.
▶ Proof via the exploration of equilibria. Mean passage times are

of the order exp{NṼ }, and has probability at least exp{−Nε}.



Summary of Section 2

▶ A primer on large deviations.
▶ The process-level large deviations of the empirical measure

process {µN}.
▶ Get the LDP for a non-interacting system using Sanov’s

theorem.
▶ Use Varadhan’s lemma to transfer it to {µN}.

▶ Large deviations of the family of invariant measures {℘N}.
▶ The unique attractor case: Identify the rate function from a

recursion.
▶ The multiple attractor case: Identify the values on the

attractors.



Section 3

Variations - Two time-scales
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Outline of Section 3

▶ Variations:
▶ A two time scale mean-field model.
▶ Process-level large deviations of the empirical measure process.

▶ Phenomena:
▶ A countable state mean-field model.
▶ Large deviations of the family of invariant measures.

▶ Summary and some open questions.



A two time scale mean-field model

▶ N particles and an environment.
▶ At time t,

▶ The state of the nth particle is XN
n (t) ∈ Z;

▶ The state of the environment is YN(t) ∈ Y.

▶ Certain allowed transitions.
▶ Particles: a directed graph (Z, EZ);
▶ Environment: a directed graph (Y, EY).

▶ Empirical measure of the system of particles at time t:

µN(t) :=
1

N

N∑
n=1

δXN
n (t) ∈ M1(Z).

▶ We are given functions λi ,j(·, y), (i , j) ∈ EZ , y ∈ Y and
γy ,y ′(·), (y , y ′) ∈ EY on M1(Z).

▶ Markovian evolution at time t:
▶ Particles: i → j at rate λi,j(µN(t),YN(t));
▶ Environment: y → y ′ at rate Nγy ,y ′(µN(t)).



An example: Constant rate retrial systems
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Stream 1

Stream 2

Stream N

Orbit queue 1

Orbit queue 2

Orbit queue N

rrr

▶ N queues (particles), and a single server (environment).

▶ The server becomes busy at rate N(λ+ α(1− µN(t)(0))).



A two time scale mean-field model

▶ (µN ,YN) is a Markov process with the transition rates

(ξ, y) →

{
(ξ, y ′) at rate Nγy ,y ′(ξ)(
ξ +

δj
N − δi

N

)
at rate Nξ(i)λi ,j(ξ, y).

▶ A “fully coupled” two time scale process.
▶ Assumptions:

▶ The graphs (Z, EZ) and (Y, EY) are irreducible.
▶ The functions λi,j(·, y) are Lipschitz continuous and

infξ λi,j(ξ, y) > 0 for all (i , j) ∈ EZ and y ∈ Y.
▶ The functions γy ,y ′(·) are continuous and infξ γy ,y ′(ξ) > 0 for

all (y , y ′) ∈ EY .



The occupation measure process

▶ Fix a time duration T > 0.

▶ View µN as a random element of D([0,T ],M1(Z)).

▶ Consider the occupation measure of the fast environment:

θN(t)(·) :=
∫ t

0
1{YN(s)∈·}ds, 0 ≤ t ≤ T .

▶ θN is a random element of D↑([0,T ],M(Y)), the set of θ
such that θt − θs ∈ M(Y) and θt(Y) = t for 0 ≤ s ≤ t ≤ T .

▶ We can write θ as θ(dydt) = mt(dy)dt where mt ∈ M1(Y).

▶ We consider the process (µN , θN) with sample paths in
D([0,T ],M1(Z))× D↑([0,T ],M(Y)).



The averaging principle

▶ Suppose we freeze µN(t) to be ξ. Then for large N,
▶ The YN process would quickly equilibrate to πξ, the unique

invariant probability measure of

Lξg(y) :=
∑

y ′:(y ,y ′)∈EY

(g(y ′)− g(y))γy ,y ′(ξ), y ∈ Y.

▶ For a particle, an (i , j) transition occurs at rate∑
y∈Y λi,j(ξ, y)πξ(y) =: λ̄i,j(ξ, πξ).

Theorem (Bordenave et al. 2009)

Suppose that µN(0) → ν in M1(Z). Then µN converges in
probability, in D([0,T ],M1(Z)), to the solution to the ODE

µ̇t = Λ̄T
µt ,πµt

µt , 0 ≤ t ≤ T , µ0 = ν.

where Λ̄µt ,πµt
(i , j) = λ̄i ,j(µt , πµt ).

▶ µN is a small random perturbation of the above ODE. We
study the large deviations of (µN , θN).



Main result

Theorem
Suppose that {µN(0)}N≥1 satisfies the LDP on M1(Z) with rate
function I0. Then the sequence {(µN(t), θN(t)), 0 ≤ t ≤ T}N≥1

satisfies the LDP on D([0,T ],M1(Z))× D↑([0,T ],M(Y)) with
rate function

I (µ, θ) := I0(µ(0)) + J(µ, θ).

Typical (µN , θN)

A deviation.
Prob ≈ e−NI (µ,θ).



The rate function J

J(µ, θ) :=

∫
[0,T ]

{
sup

α∈R|Z|

(〈
α, (µ̇t − Λ̄T

µt ,mt
µt)

〉
−

∑
(i ,j)∈EZ

τ(α(j)− α(i))λ̄i ,j(µt ,mt)µt(i)

)

+ sup
g∈R|Y|

∑
y∈Y

(
−Lµtg(y)

−
∑

y ′:(y ,y ′)∈EY

τ(g(y ′)− g(y))γy ,y ′(µt)

)
mt(y)

 dt

whenever the mapping [0,T ] ∋ t 7→ µt ∈ M1(Z) is absolutely
continuous, where θ(dtdy) = mt(dy)dt, and J(µ, θ) = +∞
otherwise.

▶ τ(u) = eu − u − 1, u ∈ R.



Some remarks about the rate function

▶ J(µ, θ) ≥ 0 with equality iff (µ, θ) satisfies the mean-field
limit.

▶ Two parts. The mean-field part (slow component) and
occupation measure part (fast component).
▶ For the slow component, the average of the fast variable

appears.
▶ For the fast component, the slow variable is frozen.

▶ For occupation measure of Markov processes, the canonical

form of the rate function is
∫
[0,T ] suph>0

∑
Y −Lµt h(y)

h(y) mt(y)dt

(Donsker and Varadhan, 1973). This can be obtained by
taking h = eg .



Large deviations of µN

Corollary

{µN} satisfies the LDP on D([0,T ],M1(Z)) with rate function

µ 7→ I0(µ0) + inf
θ
J(µ, θ).

▶ Follows from contraction principle since the mapping
(µ, θ) 7→ µ is continuous.

▶ Can quantify rare transitions.

M1(Z)



Outline of the proof

▶ We use the method of stochastic exponentials (Pulahskii
2016, 1994).

▶ Show exponential tightness. This gives a subsequential LDP.

▶ Get a condition for any subsequential rate function (in terms
of an exponential martingale).

▶ Identify the subsequential rate function on “nice” elements of
the space.

▶ Extend to the whole space using suitable approximations.

▶ Unique identification any subsequential rate function
(regardless of the subsequence) implies the LDP.



An exponential martingale

▶ If Nt is the unit rate Poisson point process, then Nt − t is a
martingale.

▶ Recall that

τ(α) = log E (exp{α(N1 − 1)}).

▶ One can verify that

exp{α(Nt − t)− τ(α)t}

is a martingale for all α.

▶ We get a necessary condition for the subsequential rate
function in terms of such exponential martingales.



Exponential tightness

Theorem
The sequence {(µN(t), θN(t)), t ∈ [0,T ]}N≥1 is exponentially
tight in D([0,T ],M1(Z))× D↑([0,T ],M(Y)), i.e., given any
M > 0, there exists a compact set KM such that

lim sup
N→∞

1

N
logP ({(µN(t), θN(t)), 0 ≤ t ≤ T} /∈ KM) ≤ −M.

For β > 0 and α ∈ R|Z|, with XN,t = ⟨α, µN(t)⟩,

exp

{
N

(
βXN,t − βXN,0 − β

∫ t

0
ΦYN,s

f (µN,s)ds

−
∫ t

0

∑
(i ,j)

τ(β(α(j)− α(i)))λi ,j(µN,s ,YN,s)µN,s(i)ds

)}
, t ≥ 0,

is an exponential martingale. Use Doob’s inequality and a condition
for exponential tightness in D([0,T ],R) (Puhalskii, 1994).



An equation for the subsequential rate function

▶ Let {(µNk
, θNk

)}k≥1 be a subsequence that satisfies the LDP
with rate function Ĩ .

▶ Let α : [0,T ]×M1(Z) → R|Z| and
g : [0,T ]×M1(Z)× Y → R be bounded measurable, and
continuous on M1(Z).

▶ Define Uα,g
t (µ, θ) by∫

[0,t]

{
⟨αs(µs), µ̇s − Λ̄T

µs ,ms
µs⟩

−
∑
(i ,j)

τ(αs(µs)(j)− αs(µs)(i))λ̄i ,j(µs ,ms)µs(i)

+
∑
y

(
− Lµsgs(µs , ·)(y)

−
∑

y :(y ,y ′)∈EY

τ(gs(µs , y
′)− gs(µs , y))γy ,y ′(µs)

)
ms(y)

}
ds.



An equation for the subsequential rate function

▶ We can show that, for each α and g ,

sup
(µ,θ)∈Γ

(Uα,g
T (µ, θ)− Ĩ (µ, θ)) = 0, (1)

where Γ is the set of (µ, θ) such that t 7→ µt absolutely
continuous.

▶ On one hand, for a smaller class of α and g ,

E exp{NUα,g
T (µN , θN) + V g

T (µN ,YN)} = 1,

where V g
T is O(1) a.s.

▶ On the other hand, Varadhan’s lemma implies that

lim
k→∞

1

Nk
log E exp{NkU

α,g
T (µNk

, θNk
) + V g

T (µNk
,YNk

)}

= sup
(µ,θ)

(Uα,g
T (µ, θ)− Ĩ (µ, θ))

This can be extended to (1).
▶ Moreover, the supremum in (1) is attained.



A candidate rate function

▶ Recall that sup(µ,θ)∈Γ(U
α,g
T (µ, θ)− Ĩ (µ, θ)) = 0.

▶ A natural candidate for the rate function

I ∗(µ, θ) = sup
α,g

Uα,g
T (µ, θ).

▶ It can be shown that I ∗ = J.

▶ Note that Ĩ ≥ I ∗ on Γ. Outside Γ, I ∗ can be shown to be +∞.

▶ Goal: show that Ĩ ≤ I ∗ whenever I ∗ < +∞. Once this is
established, the LDP follows.



Identification of Ĩ on “nice” elements

▶ Suppose (µ̂, θ̂) is such that I ∗(µ̂, θ̂) < +∞, and
▶ inft∈[0,T ] mini∈Z µ̂t(i) > 0,
▶ the mapping [0,T ] ∋ t 7→ µ̂t ∈ M1(Z) is Lipschitz

continuous,
▶ inft∈[0,T ] miny∈Y m̂t(y) > 0 where θ̂(dydt) = m̂t(dy)dt.

▶ Then, there exists (α̂, ĝ) that attains supα,g U
α,g
T (µ̂, θ̂).

▶ To show that α̂ and ĝ are continuous on M1(Z), we use the
Berge’s maximum theorem.

▶ With this (α̂, ĝ), get (µ̃, θ̃) that attains the supremum in

sup(µ,θ)∈Γ(U
α̂,ĝ
T (µ, θ)− Ĩ (µ, θ)) = 0.

▶ Hence, I ∗(µ̃, θ̃) ≥ U α̂,ĝ
T (µ̃, θ̃) = Ĩ (µ̃, θ̃).

▶ Since I ∗ ≤ Ĩ , we get I ∗(µ̃, θ̃) = Ĩ (µ̃, θ̃).

▶ Show that (µ̃, θ̃) = (µ̂, θ̂).

▶ It follows that Ĩ (µ̂, θ̂) = I ∗(µ̂, θ̂).



Approximation procedure

▶ For general elements (µ̂, θ̂), (α̂, ĝ) may not exist.
▶ Produce (µ̂k , θ̂k) that are “nice”, and satisfy

▶ (µ̂k , θ̂k) → (µ̂, θ̂) as k → ∞,
▶ Ĩ = I ∗ on (µ̂k , θ̂k) for all k ,
▶ I ∗(µ̂k , θ̂k) → I ∗(µ̂, θ̂) as k → ∞.

▶ It then follows that Ĩ = I ∗ on (µ̂, θ̂).
▶ Relaxation of inft∈[0,T ]mini∈Z µ̂t(i) > 0:

0

1

τ̂k
1
kτk T

µ̂(i)

µ̂k(i)

▶ Other conditions are relaxed using suitable approximations.
We finally get Ĩ = I ∗ for all elements.



Summary of the proof

Space “Dual” space

(µ̂, θ̂) (α̂, ĝ) Ĩ (µ̂, θ̂) = I ∗(µ̂, θ̂)

(µ, θ) Ĩ (µk , θk) = I ∗(µk , θk)
→ I ∗(µ, θ)

▶ For “nice” elements of D([0,T ],M1(Z))×D↑([0,T ],M(Y)),
we show that Ĩ = I ∗ (convex analysis, variational problems).

▶ Approximate general elements using “nice” elements and pass
to the limit (parametric continuity of optimisation problems,
dominated convergence).



Section 4

Variations - Phenomena in the infinite state
space case



The running cost of following a trajectory φ(·)

I At each time t, if the current state is φ(t), the natural tendency is
to go along the tangent Λ(φ(t))Tφ(t).

I To follow φ(t) however, the system needs to work against the
McKean-Vlasov gradient and move along the tangent φ̇(t).

I L(φ(t), φ̇(t)).



Guessing the running cost

I Write φ̇(t) = G (t)Tφ(t).

I By decoupling, each node’s state is iid φ(t).

I Natural tendency for the Nφ(t)(i) nodes in state i is to have i  j
at current (instantaneous) rate λi,j(φ(t)).

I But to move along φ(t) they must have an instantaneous rate of
Gi,j(t).

I The Nφ(t)(i) Bernoulli(p = λi,j(t) dt) random variables must have
a large deviation and must have an empirical measure close to
(q = Gi,j(t) dt). By Sanov’s theorem, the negative exponent is:

Nφ(t)(i)D(q||p) ∼= Nφ(t)(i)(q log
q

p
− q + p)

I Sum over i and j and integrate over [0,T ] to get the action
functional: ∫ T

0

L(φ(t), φ̇(t)) dt.



The case of a globally asymptotically stable equilibrium ξ∗

Theorem
V (ξ) is given by

V (ξ) = inf

{∫ T

0

L(φ(t), φ̇(t)) dt | φ(0) = ξ∗, φ(T ) = ξ,T ∈ (0,∞)

}
.

I Any deviation that puts the system at ξ must have started its effort
from ξ∗.

I V (ξ∗) = 0.



The path to ξ
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Can specify not only exponent V (ξ) of the probability, but also the path.

Any deviation that puts the system near q must have started from ξ∗,
and must have taken the least cost path.



When there are multiple stable limit sets
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The case of two stable equilibria is easy to describe.

I V12 = cost of moving from ξ∗1 to ξ∗2 .
I V21 = cost of the reverse move.
I If V12 > V21, then v1 = 0 and v2 = V12 − V21.



When there are multiple stable limit sets

Theorem
V (ξ) is given by

V (ξ) = inf
i

{
vi +

∫ T

0

L(φ(t), φ̇(t)) dt | φ(0) = ξ∗i , φ(T ) = ξ,T ∈ (0,∞)

}
.

I Start from the global minimum ξ∗1 and move to the attractor in the
basin in which ξ lies along the least cost path.

I Then move to ξ along the least cost path.



Infinite state space

0 1 i i + 1 r - 1

I Now r =∞

I Forward rate λf , backward rate λb. Let ξ∗ be the invariant measure.

I X
(N)
n (∞) ∼ ξ∗

I ξ∗(i) = (1− ρ)ρi , i ≥ 0, where ρ = λf

λf +λb
.



The “interacting particle system”, LDP, and the rate
function

I For explicit calculations, assume that the queues are noninteracting
(i.e., each evolves independently).

I We are interested in invariant measure for the empirical measure.

I The invariant measure is just the law of µN(∞) = 1
N

∑N
n=1 δX (N)

n (∞)

I (Sanov) The µN(∞) sequence satisfies the LDP with rate function
given by relative entropy I (·‖ξ∗).



What are “reachable” points at stationarity?

I Let ι(i) = i .

I I (ξ‖ξ∗) is finite if and only if 〈ξ, ι〉 <∞.

I Define ϑ(i) = i log i . There are points ξ for which 〈ξ, ι〉 <∞, but
〈ξ, ϑ〉 =∞. Mass is sufficiently spread out, since I (ξ, ξ∗) is finite,
they are still reachable at stationarity.



Quasipotential

I Define the quasipotential as before.

V (ξ) = inf

{∫ T

0

L(φ(t), φ̇(t)) dt | φ(0) = ξ∗, φ(T ) = ξ,T ∈ (0,∞)

}

≥ inf
T

sup
f∈C 1

0 ([0,T ]×Z

{
〈φT , fT 〉 − 〈φ0, f0〉 −

∫ T

0

〈φu, ∂ufu〉du

−
∫ T

0

〈φu,Λφu fu〉du −
∫ T

0

∑
i,j

τ(fu(j)− fu(i))λi,j(φu)φu(i)du


I Last two terms simplify to

∫ T

0

∑
i,j exp{fu(j)− fu(i)}λi,j(φu)φu(i)du

I Strategy
I Choose fn = ϑ(Hat(0, n, 2n)). This is like ϑ(n) up to n.
I Then fn(j)− fn(i) ≤ 1 + log(i + 1) for the edges in the graph.
I Last two terms ∝ 〈φu, ι〉 which integrates to a finite value.
I Then let fn → ϑ as n→∞.
I Then 〈ξ, ϑ〉 =∞⇒ V (ξ) =∞.



Infinite state space

Theorem
The rate function for the invariant measure is the relative entropy
I (·‖ξ∗), and this is not equal to the quasipotential V .

I Take a ξ whose mean is finite but the slightly larger i log i moment
is infinite.

I V comes from a finite horizon perspective. There are barriers that
are too difficult to cross in any finite time horizon, but in the
stationary regime these can be crossed leading to a finite rate
function at these points.

I A partial answer

Theorem
If λi,i+1(·) = Θ(1/(i + 1)), then the rate function for the invariant
measure is indeed governed by the quasipotential.



The take-away picture
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V1→2 > V2→1
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