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Section 1

Model description and the mean-field limit



A mean-field SIS epidemic model

» Interacting system with N individuals
» Each node’s state space: Z = {S, I}

» Transitions:
Bs(1-s)

» Dynamics depends on the “mean field”. Global interaction.
un(t) = s = fraction of nodes in infectious state

» Transition rate from S to | or | to S depends on the fraction of
nodes in the infectious state. As ;(un(t)) = Bs(1 —s) and
Ans(un(t)) = 1.



Reversible versus nonreversible dynamics

» (Reversible) Gibbsian system

» Example: Heat bath dynamics

» State space Z ={0,2,...,r — 1}

» Configuration of the N particles x = (x1,. .., xn)

» E(un): Energy of a configuration x = (x1,...,xny) with mean uy
» An j to j transition takes uy to un — ﬁé; + ﬁéj

e~ NE(kn)

(i) =
J(MN) efNE(”Nf%‘;f*%‘sj) + e—NE(pn)

» In general, Aj(-) may result in nonreversible dynamics

» Weak interaction



Wireless Local Area Network (WLAN) interactions
DCF 802.11 countdown and its CTMC caricature

» N particles accessing the common medium in a wireless LAN
» Each particle's state space: Z =1{0,1,---,r — 1}

» Transitions:

Q-0 00 O

» State = # of transmission attempts for head-of-line packet
» r: Maximum number of transmission attempts before discard

» Coupled dynamics: Transition rate for success or failure depends on
empirical distribution py(t) of particles across states



Example transition rates

> Matrix of rates: A(-) = [ Aij(§) lijez-
» Assume three states, Z = {0,1,2} or r = 3.
> Aggressiveness of the transmission ¢ = (¢, ¢z, ¢3).

» Conventional wisdom, double the waiting time after every failure,
Ci = C,',1/2.

» For p, the empirical measure of a configuration, the rate matrix is

—() a1l — e ) 0
ANp)=| e e —() o(l— e—<u7c>)
C367<H'1C> O 7()

> “Activity” coefficient a = (i, c).
Probability of no activity = e™?.



Mean-field interaction and dynamics
» Configuration XV(t) = (xi(t), ... xn(t)).
» Empirical measure pp(t): Fraction of particles in each state

> A particle transits from state i to state j at time t with rate
Aij(pn(t))



Studying the time-evolutions

» Tag a particle, say n;. Study X,(,ll\l)() Marginal at ny.

> Tag two particles, say ny, np. Study (X,SIN)(),X,SZN)()) marginals at
ny, no.

> Study pin(-).



The Markov processes, big and small
> (X,SN)(o), 1 < n < N), the trajectory of all the n nodes, is Markov

» Study pn(-) instead, also a Markov process
Its state space size is the set of empirical probability measures on N
particles with state space Z.

» Then try to draw conclusions on the original process.



The smaller Markov process py(-)

» A Markov process with state space being the set of empirical
measures of N nodes.

» This is a measure-valued flow across time.
> The transition £ ~ £ + e — €& occurs at rate NE(i)Ar ().

> For large N, changes are small, O(1/N), at higher rates, O(N).
Individuals are collectively just about strong enough to influence the
evolution of the measure-valued flow.

» Fluid limit : py converges to a deterministic limit given by an ODE.



The conditional expected drift in uy

» Recall A(-) =[ Ajj(-) ] without diagonal entries. Then

im & Eln(t+h) = an(0) |in(t) =€ = NQ)T €

with suitably defined diagonal entries.



An interpretation

» The rate of change in the kth component is made up of increase

D (NG - Aik(€) - (+1/N)

iitk

» and decrease

(N&) D Mei(©)(=1/N).

itk

» Put these together:

D ENKE) — & D) M) = Zfi)\i,k(ﬁ) = (M&)T &)k

iitk iitk



The conditional expected drift in uy

» Recall A(-) =[ Ajj(-) ] without diagonal entries. Then

im & Blan(e+ B) — an(e) | n(e) = € = AT ¢

with suitably defined diagonal entries.

> Anticipate that pp(-) will solve (in the large N limit)

() = Ap(e)" w(t), t>0 [McKean-Vlasov equation]
wo) = v

» Nonlinear ODE.



ODE preliminaries
) = Fp(t), t=0
uo) = v
» C([0, T],R"): space of continuous functions from [0, T] to R".

» Can define a norm and a distance on this space:

el = sup_lu(t)]l
t

)

dr(p,€) = [lp =&l

> C([0,00),R") with metric d(p,&) =Y 7,277 (dr(u|7,€l7) A 1).

» An ODE is well-posed if
» For each v € R", the ODE has a unique solution p(-) on [0, c0)
» The mapping v — p(-) € C([0,00),R") is continuous.

Theorem
If F is Lipschitz, then the ODE is well-posed, and the solution can be
written as p(t) = v + fot F(u(s)) ds fort € R,.



Convergence in probability

> upn(-) a sample path (random) while u(-) some deterministic or
random path

» Fix T. View pn(-) (interpolated) and p(-) as elements of
C([o, T], Ma(2)).

» We say un(-) — p(-) if for every € > 0, we have
Pr{dr(un(-),pu(-)) > e} = 0as N — co

» This is the same as asking that the path uy(-) remains within any e-
tube of p(-) with probability approaching 1 as N — oco.




A limit theorem

Theorem
Suppose that the initial empirical measure py(0) B v, where v is
deterministic.

Assume each \; j(-) is Lipschitz in its argument. Let u(-) be the solution
to the McKean-Vlasov dynamics with initial condition (1(0) = v.

Then i (-) % ().

Technicalities:
» Fix T >0 and £ > 0. We will argue
Pridr(un, ) > e} < Pr{[lun(0) — u(0)|| > /(2¢"7)}
+Crexp{—NTXh(e/(C, TeMT))}

where M is the Lipschitz constant of the driving function, X is the
max of the transition rates, and
h(t)=1+t)In(1+1t)—t, t>-1



Back to the individual nodes
» Let pu(-) be the solution to the McKean-Vlasov dynamics

» Choose a node uniformly at random, and tag it.

» un(:) is the distribution for the state of the tagged node at time t.

» As N — oo, the limiting distribution is then p(t)



Joint evolution of tagged nodes

Theorem

Fix t, k. Tag k nodes at random.

Let (X,SN)(O), 1 < n < N) be exchangeable and let 11(0) % v, a fixed
limiting initial condition. Assume all transition rates are Lipschitz
functions. Then

(XM (2),..., XN(£)) & (U, ..., Uy)

? ng

where Ui, ..., Uk are iid with distribution u(t).

» If the interaction is only through un(t), and this converges to a
deterministic y(t), the transition rates are just A; j(u(t)).

» Each of the k nodes is then executing a time-dependent Markov
process with transition rate matrix A(u(t)).

> Asymptotically, no interaction (decoupling). The node trajectories
are (asymptotically) iid (i.e., u(t) ® -+ ® u(t)).



Stationary regime

> Interest in large time behaviour for a finite N system: lim; o pn(t).
If N is large, we really want:

lim {Iim ,uN(t)} .

N—oo Lt—oo

» Idea: Try to predict where the system will settle from the following:

lim | lim ,uN(t)} = timoo,u(t).

t—o0 |:N~>oo



A fixed-point analysis

» Solve for the rest point of the dynamical system:
a(t) = Au(t)) Tu(t), ie., solve for & in

NE)TE=0.
» If the solution is unique, say £*, predict that the system will settle
down at £* ® €& ® ... ®E".
» Works very well for the exponential backoff.

» Another example in the next slide



SIS system and herd immunity

» Normalise time so that recovery rate is 1. Assume that the contact
rate is 3.

» In this normalisation, 8 = Ry of the infection.
» The model is fi1(t) = Bpa(t)(1 — pa(t)) — pa(t), with p(0) = v.
> Rest points £* solve S¢*(1 —&*) —¢* =0

> & =0o0r&* =1-1/8 (herd-immunity).



Issues: A malware propagation
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» The fixed point is unique, but unstable.
» All trajectories starting from outside the fixed point, and all
trajectories in the finite N system, converge to the stable limit cycle.



A sufficient condition when the method works

Theorem
Assume fully connected graph and Lipschitz rates.

Let un(0) — v in probability.

Let the ODE have a (unique) globally asymptotically stable equilibrium
& with every path tending to £*.

Then pp(o0) LA &*.

It is not enough to have a unique fixed point £*.
But if that £* is globally asymptotically stable, that suffices.



A sufficient condition

A lot of effort has gone into identifying when we can ensure a globally
asymptotic stable equilibrium.

Theorem
If ¢ is such that (¢, c) < 1 for all £, then the rest point £* of the
dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with ¢y < 1.



The case of multiple stable equilibria for the ODE

1

Fraction in state 1

I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Fraction in state 0

» Different parameters: ¢ = (0.5,0.3,8.0).

» There are two stable equilibria.
One near (0.6,0.4,0.0) and another near (0,0, 1).



The case of multiple stable equilibria: metastability
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Fraction of nodes in state 0 is near 0.6 for a long time, but then moves
to 0, and in a sequence of rapid steps.

The reverse move is a lot less frequent.



A selection principle: Preview to the second hour

» If unique globally asymptotically stable equilibrium £*, then
pn(00) % &5, (Limit law).

> If we encounter multiple stable limit sets, look at probability of a
large deviation.

» Characterise the exponent in

Pr{un(o0) € neighbourhood of £} ~ exp{—NV(&)}.

» The locations {£ : V(&) = 0} should “select” the correct limit set.

> V(&) is called a quasipotential (Freidlin-Wentzell).



Quasipotential V(&)

The case of a (unique) globally asymptotically stable equilibrium for the
McKean-Vlasov dynamics: V/(&*) = 0.



Quasipotential V(&)
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The case of a unique but unstable rest point. V/(£*) > 0.

All trajectories converge to the stable limit cycle.



Quasipotential V(&)
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The case of two stable equilibria.

The selection is the one that has the deepest shade of blue (V(&5) = 0).



Quasipotential V(&)
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A qualitative picture for the case ¢ = (0.5,0.3,8.0).

The two stable points are (0.6,0.4,0.0) and (0.0,0.0, 1.0).
The latter is a truer representative of the large time behaviour.



Proofs: First Kurtz's theorem

Theorem
Suppose that the initial empirical measure py(0) B v, where v is
deterministic.

Assume each \; j(-) is Lipschitz in its argument. Let u(-) be the solution
to the McKean-Vlasov dynamics with initial condition p(0) = v.

Then pn(-) 2 p(-).

Technicalities:
» Fix T >0 and £ > 0. We will argue

Pridr(un,p) >e} < Pr{llun(0) — u(0)|| > ¢/(2¢"7)}
+Crexp{—NTXh(e/(C, TeMT))}

where M is the Lipschitz constant of the driving function, X is the
max of the transition rates, and
h(t)=(1+t)In(1+t)—t, t>-1



Proofs: Proof of Kurtz's theorem

> Time change. Let M(-) be a unit rate Poisson point process (PPP).
Then M( [, A(s)ds) is a time-inhomogeneous PPP with
instantaneous rate A(+).

> Let (M;;(-));; be independent unit-rate PPP.

(@) = n®)+ 3 () M ([ Wit i)
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> Martingale noise M; j(t) is of the form M, ;(t) — ¢
» By triangle inequality and Lipschitz,

len(t) = p()]| < [lpen (0 )l +/||F pn(s)) — Fu(s))l ds + [|noise]|

< 1un(0) = p(0)] + M /0 lun(s)) — p(s)l|ds + | noise]

» Then Poisson concentration and Gronwall.



Proofs: Marginal

X,SlN)(t) % Uy where Uy is a random variable with distribution w(t).
» Take any bounded test function ¢ on Z.

» Suffices to show ]E[(;ﬁ(X,glN)(f))] — E[¢(U1)]

|
=

E[p(X5 ()]

4
=
=
Y



Proofs: Double marginal

XM (), XXM (£)) % (Uy, Un), where Uy and Us are iid ~ p(t).
» Take any two bounded test functions ¢; and ¢, on Z.

> Suffices to show E[¢1 (X" (£))d2(XV(£)] = E[¢1(U)] E[¢a(Us)]
E[¢1(XS"(£))¢2(X ()] — E[é1(Ur)] E[ga(Lh)]

= E[a(XP0)6:(x0(¢)] —E [H<u~(t),¢/>]

& | [Lln(2).6) | ~ B (1)) E[oa(Ve)
_ IE[N(N PR xn&”(t))]

E (Al, > ¢1(x£1”’(r))> (Al, )3 qsz(xn&”’(r)))]
Hw(r),qs/ﬁ — [Tt o0

I=1 1=1

+E




Proofs: Globally asymptotically stable equilibrium and
stationary regime
Globally asymptotically stable equilibrium = pp(00) 4, £

» 7wy = Law(un(0)), invariant measure. Then 7wy = Law(up(t))
also.

» Compactness implies subsequential limits wy, — .
> T=7o0 ¢;1, under the McKean-Vlasov flow &,

» Compactness of the space, Liapunov stability, Gronwall implies that
for every € > 0, there is a T such that Vt > T, we have support of
(rod; 1) C B.(¢*) forall t > T.

» So support of 7 is within a ball of ¢ around £*.

» ¢ > 0is arbitrary. So support of 7 is {{*} and m = d¢+, unique.



Section 2

Large deviations of mean-field models
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Recall the mean-field model

> N particles. The state of the nth particle is XN(t) € Z. The
empirical measure at time t is

N
1
p(t) = ; OxN(t)-

» An i — j transition occurs at rate A; j(un(t)).
» The McKean-Vlasov equation:

e = Npe) T e, £ > 0.

» We will now quantify various rare events associated with

{1}



Outline of Section 2

» An introduction to large deviations.
» Basic definitions, some examples.

» Process-level large deviations of the family {upn}.
» A change of measure argument.

> Large deviations of the invariant measure of py.



A primer on large deviations



Large deviation principle (LDP)

> Let S be a complete and separable metric space. Let
{Xn, N > 1} be a sequence of S-valued random variables.

» Roughly, P(Xy € A) ~ exp{—Ninfycal(x)}.
» Here, | : S — [0, 00] is called the rate function.



Large deviation principle (LDP)

Definition
{Xn, N > 1} is said to satisfy the LDP on S with rate function / if

e (Compactness of level sets). For any s > 0,
®(s) :={x €S :/(x) < s} is a compact subset of S;

® (LDP lower bound). For any v >0, § > 0, and x € S, there
exists Ng > 1 such that

P(d(Xn, x) < 6) = exp{—N(I(x) + )}

for any N > Np;

® (LDP upper bound). For any v >0, § >0, and s > 0, there
exists Mg > 1 such that

P(d(Xn, ®(s)) = 6) < exp{—N(s —7)}

for any N > Np.



Example: Sanov's theorem

>

>

Let S be a Polish space. Let u be a probability measure on S.
Let X1, Xo,..., Xy beiid. u.

Define the empirical measure .
1 N °
= 5 2 % Mn(ez
n=1 °
. My (w1)
This is an M;(S)-valued random

variable.

By the weak law of large numbers, uy — p in M1(S) as

N — o0, in probability.

But there is a positive probability for piy to be close to v # .

Theorem (Sanov)
{un, N > 1} satisfies the LDP on M1(S) with rate function
I(-[w)-



The D-space

> Let S be a complete and seperable metric space.
» Fix T > 0. Let D([0, T],S) denote the space of S-valued
functions on [0, T] that are
» Right continuous at each t € [0, T), and
> Possesses left limits at each t € (0, T].
> Examples:
» All continuous functions on [0, T].
» Trajectories of a Poisson point process.
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Time {t)



The D-space

» We can define a distance function on D that takes into
account small time perturbations.
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» Under this metric, D is a complete and seperable metric space.



Example: LDP on the space of trajectories

» Consider the unit rate Poisson point process X(t) for
tel0, T]
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» X is a D([0, T],R)-valued random variable.



Example: LDP on the space of trajectories

» Consider the time-scaled and amplitude-scaled process:

1
NX(Nt).
N =10
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Example: LDP on the space of trajectories

» Consider the time-scaled and amplitude-scaled process:
TX(Nt).

N =100
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Example: LDP on the space of trajectories

» Consider the time-scaled and amplitude-scaled process:
TX(Nt).

N = 1000
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Example: LDP on the space of trajectories

» Consider the time-scaled and amplitude-scaled process:
X (Nt).

N = 10000
10

(k]
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> The process 1.X(Nt) is a small random perturbation of the
ODE

x(t) =1, x(0) =0, t € [0,1].



Example: LDP on the space of trajectories

> Question: probability that % X (Nt)
tracks a given function ?

> One can show that {#X(Nt), N > 1} satisfies the LDP on
D([0, T],R) with rate function

S(p) = /W] 7 ((t) - D,

if t — (t) is absolutely continuous, increasing, and ¢(0) = 0;
S(p) = oo otherwise.

» Here,

wry | (x+1)log(x+1)—x, ifx>-1,
T(X)_{oo, if x < —1.



A closer look at the rate function

>
S(¢) = /[M] (1) — 1)dt.

» 7% is the convex dual of 7(u) = e’ —u—1, ueR;

7*(t) = sup(ut — 7(v)), t € R.

u

> So,

S(p) = / sup(u((£) — 1) — 7(u))d.

[0,7] v

» Such variational forms will appear later.



Contraction principle

» S, T are metric spaces. f : S — T is continuous.
» {Xy}s are S-valued random variables. Define Yy = f(Xy).

Theorem (Contraction Principle)

If {Xn} satisfies the LDP with rate function I, then {Yn} satisfies
the LDP with rate function

= inf 1(x).
J(y) XESII}r/]:f(X) (X)



A new LDP from change of measure

» Let {Py} satisy the LDP with rate function /.
> Let Qun be such that

dQp

TPN(X) = exp{Nf(x)},

for some f : S — R, bounded and continuous.

» Additionally, suppose that {Qpn} is exponentially tight: Given
M > 0, there exists a compact set Ky such that
Qn(Kyy) < exp{—NM} for all N.

» Then, {Qy} satisfies the LDP with rate function /(x) — f(x).



A new LDP from change of measure
» Lower bound: For x € § and § > 0,
Qu(d(Xn, x) < 8) = EM(Lix,eB(xs)))
= EPV(exp{Nf(Xn)}1(xyeB(x.0)})

> exp{N(f(x) — )} Pn(Xn € B(x,0))
> exp{—N(I(x) — f(x) + 2¢)}.

» Upper bound: For a closet set F,

Qn(F) < Qn(Ky) + Qu(F N Ky)
< exp{—NM} + Qn(F N Ku).

» Since F N K), is compact, we can cover it using a finite
number of balls. For the ith ball,

Qu(B(xi,9)) < exp{=N(I(x) — f(x) — £)}.



Varadhan's lemma

Theorem
Let f : S — R be bounded and continuous. Suppose that {Xy}
satisfies the LDP with rate function |. Then

Jim_ 5710 Eexp{NF(X)}) = sup(F(x) = 1)

» By the LDP,
E(exp{Nf(Xn)}11xy~x}) ~ exp {NF(x)} exp {—NI(x)}.
» The leading terms in the expectation are those x € S for
which f(x) — I(x) is the largest.



Large deviations of the empirical measure process



Recall the empirical measure process

J5: . .
> pn(t) = un(t) + 5 — § at rate Nun(£)()Ai(in(t)).
» Recall the McKean-Vlasov equation:

fre = Npie) " e, t > 0.

» From Section 1, if un(0) = v in M1(Z), then un(-) — p(-)
in D([0, T], M1(Z)), in probability.
> \We now present the large deviations of up.
McKean-Vlasov trajectory

Another path ét
Small probability.




Large deviations of 1y

Theorem

Let un(0) — v in M1(Z). Then uy satisfies the LDP on
D([0, T], M1(Z)) with rate function Sy 7)(-|v) defined as follows.
If io =v and [0, T] 5 t — pr € M1(Z2) is absolutely continuous,

Somtur) = [ sup {(auie ~ Ao

[0,T] acRIZI

_ Z r(a(j)—a(i)))\i,j(ut)ﬂt(i)}dta

(ij)e€

else Spo,11(p|v) = oo. Here, 7(u) = " —u—1.



An interpretation of the rate function

» Consider a path iy = G(t) 7 .

» In a small time around t, for an i — j transition,

» The usual rate is Bernoulli(p = A; j(x(t))dt).
» The new rate is Bernoulli(q = G; j(t)dt).

» By Sanov's theorem, the infinitesimal cost of this change is

I(Bernoulli(q)||Bernoulli(p)) = <q|ogz —q+ p> .

» Accumulate these costs over [0, T] to get the rate function.



LDP for {un} — proof sketch

» Consider a system of non-interacting particles.
> )i j(§) =1forall £ € Mi(Z) and (i,j) € €.

» Define the empirical measure on paths

LN
fin = D Oxp-
n=1

» This is a M1(D([0, T], Z)) valued random variable.

» 7iy(t) = fiom, b, where m; is the projection mapping
D([0, T], 2) > v = ¢(t) € My(2).

» Let P, denote the law of a particle starting at z.

» If XV(0) = z for all n, then by Sanov's theorem, {7y}
satisfies the LDP with rate function Q — /(Q||Py).



LDP for {un} — proof sketch

» When 7ip(0) — v, then a generalisation of Sanov’s theorem
gives the LDP for {fiy} with rate function

J(Q)= sup [/ fdQ — Z Iog/ fsz]
feCy(D) zEZ
(Dawson and Gartner, 1987).
> In particular, when v = 6,, J(Q) = I(Q||P,).
> By Jensen's inequality, J(Q) > 1(Q| >, v(2)P).



A change of measure

» Consider two probability measures: P ~ Poisson(\1), and
Q ~ Poisson(\2).

» We have

At exp {=\i}

Plk) = kI

k=0,

and similarly Q(k).
> So,

k
(’EE:; - (i\i) exp{—(A2 — A1)}

— exp {klog (ii) (o - )\1)}.



A change of measure

» More generally, let P (resp. Q) be the law of the Poisson
point process with rate A\; (resp. \2).

» Both P and Q are probability measures on D([0, T],Z.).

» By Girsanov's theorem,

aQ, . A2
ﬁ(x) = exp Z 1( 1 log <)\1> - /[O,T](/\z —A\1)dt

0<t<T

for x € D([0, T],Z4).



LDP for {un} — proof sketch

» Let Py (resp. Py) be the law of the interacting
(resp. non-interacting) system.
» By Girsanov's theorem,
dP
—=(Q) = exp{Nh(Q)}, Q € M(D),
dPp

where,

hQ) = /D hi(x, @) Q(dk),

hl(X7 Q) = Z l{xtyﬁxt_} |Og )‘th,Xt(Q(t_))

0<t<T

_/ Z (Axe_ j(Q(t=)) — 1)dt.

Ji(xe—.J)EE



LDP for {un} — proof sketch

» However, h is neither bounded nor continuous.
» Consider a subspace of M;(D):

My.(D) = {Q € My(D) - /Dw/o < oo} ,

where, ¢ : D — R is the function ©(x) = > oo e Lt
» Show that h is continuous at all points in I\/ILJD_).
» Then show that {7y} satisfies the LDP with rate function
Q— J(Q) — h(Q).

» By the contraction principle, {upn(t)} satisfies the LDP with
rate function Sy 71(-|v).



Large deviations in the stationary regime



The unique attractor case

| 2

>

Recall the empirical measure process up. Let oy be its
unique invariant probability measure.

pn is the law of ppy(oc0). It is a probability measure on
Mi(2).

Recall the McKean-Vlasov equation

fre = Npie) " pue, t > 0.

Suppose that £* is the unique globally asymptotically stable
equilibrium of the McKean-Vlasov equation.

From Section 1, pp(c0) converges to £* in distribution as
N — oo.

We now study the large deviations of {ppn}.



LDP for the terminal time

» Consider the random variable puy(T).
» The mapping

D([0, T], M1(2)) > ¢ = ¢(T) € My(Z)

is continuous.

» Let un(0) — v. By the contraction principle, {un(T)}
satisfies the LDP with rate function

Sr(El) = inf{Spo.r1(l)  1(0) = v, u(T) = €},

¢



LDP for the joint law (upn(0), un(T))

» So far, we assumed up(0) — v.

> Suppose we start at stationarity, i.e., the law of un(0) is pp.
Then the law of up(T) is also pp.

» Consider (un(0), un(T)).

» Suppose that pp satisfies the LDP with rate function V.
Then, under some conditions, the joint law (un(0), un(T))
satisfies the LDP with rate function

(v, &) = V(v) + S7(£lv)



A recursion for the rate function

» Suppose that op satisfies the LDP with rate function V.

We have that (upn(0), un(T)) satisfies the LDP with rate
function

v

(v, &) = V(v) + St(£lv)

» On one hand, by the contraction principle, {un(T)} satisfies
the LDP with rate function

£ _int V() + Sr(elv)]

» On the other hand, since the law of ppn(T) is pn, we have

V(e) =, _jnf V() + ()] forall T>o0.

» Is there a unique V that satisfies this?



Large deviations of oy

Theorem
The family {on} satisfies the LDP on M1(Z) with rate function

V(€)= inf Sr(¢l¢").

Further, there exists a trajectory [i such that i(t) — £* as
t — —oo, 1(0) =&, and

V(€) = S(—oo,01 (A€

1

é‘*




Large deviations of gy — proof sketch

» Show that V(¢£*) = 0.
» Then,

V(€) < V(€) + ST(E]€*) for all T > 0.
> So,

V(©) < inf Sr(€l€").



Large deviations of @y — proof sketch

» For T > 0, show that the infimum in

inf V(@) + Sr(E)

is attained.

» For each v, £ and T > 0, there is an optimal path i from v

to §, i.e., ST(¢[v) = Sp,my(Alv).
> So,

V(&) = V(i(=mT)) + Smr(§lA(—mT)).

» Argue that i(—mT) — & as m — oc.
» By the lower semicontinuity of V, and V/(£*) = 0, we have

V(&) = S(—oo0,01(£E7)-



The general case — multiple equilibria

V on M;i(2).
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The general case — some notation

» Assumptions on the McKean-Vlasov equation: There exists a
finite number of compact sets Ki, K, ..., K; such that

» Every equilibrium of the McKean-Vlasov equation lies
completely in one of the compact sets K;.

> No cost of movement within K;. Positive cost to go out of (or
come into) K;.

\/ O Ka
V(Ki, K2)
K3 ° K5

> V(Ki, Kj) = inf{ S, 11(¢l%0) : w0 € Ki, o1 € Kj, o1 ¢
Ujri jKir, T > 0} (communication cost from K; to Kj).



Approximation of iy using a discrete chain

K1 K>



Approximation of iy using a discrete chain

O

K3 o Ks

» 7, hitting time of uy in a given neighbourhood of Kj's.
» Hitting time chain: ZVN = un(7,), n > 1.
» To quantify the transitions between K;'s, we need large

deviation estimates of upy uniformly with respect to the initial
condition.



Uniform large deviations

» 1 process starting from v. Indexed by two parameters.

Definition
{py} is said to satisfy the uniform LDP over a class of subsets
AcC ./Vll(Z) if
» for each K C M;(Z) compact and s >0, £ = |
compact subset of D([0, T], M1(2));
» foranyy > 0,0 >0,s > 0and A € A, there exists Ny > 1 such that

P.(p(p, ©) < 0) > exp{=N(Sp,11(¢lv) +7)},

forall v € A, p € d,(s) and N > Np;
» forany v > 0,0 > 0,59 > 0 and A € A, there exists Ny > 1 such
that

veK (S) iS a

PV(p(Hll(lvq)l/(S)) Z 6) S exp{fN(s — r}/)}7
forallv € A, s <spand N > Np.

» Theorem: {u},} satisfies the uniform LDP over M(Z).



One step transition probability of ZN

Lemma
Given ¢ > 0, there exists 6 > 0 such that the one-step transition
probability of the chain ZV satisfies

exp{—N(V(Ki, Kj) + &)} < P(B(Ki,0), B(K],9))
< exp{~N(V(K;, K;) — )}

for all large enough N.

» Upon exit from Kj, py is most likely to visit K; that attains

miny V(Ki, K1) (= V(K).



One step transition probability of ZN — proof sketch

» Lower bound:
» By the definition of \7(K,-, Kj), given € > 0, there exists a
trajectory ¢ from K; to Kj such that
Sp, (¢l Ki) < V(Ki, K;) + .
» Then, using the uniform LDP for {un},

P(B(K;,(S), B(Kjva)) 2 PKi(:uN € nbhd(@))
> exp{—N(V(Ki, K;) +¢)}.

» Upper bound:

» Let 7y be the hitting time of UK.
» Given M > 0, we can find T; > 0 such that
Pk.(71 > T1) < exp{—NM}. 3
> Let A= {p:po € Ki o7, € Kj, Spo,11(0]Ki) < V(K;, Kj) — ¢}
» Then using the uniform LDP for {upn},

P(B(K:,4), B(K;,8)) < Px.(11 > T1) + P, (dist(un, A) > 9)
< exp{—NM} + exp{—N(V(Ki, K;) — €)}.



The Markov chain tree theorem

» Consider an irreducible Markov chain on L = {1,2,...,/} with
transition probaiblity matrix P.
» An i-graph G(i) is a directed graph on L such that
» There is exactly one outgoing arrow from every j € L.
» There are no closed cycles.

» For an j-graph g, let 7(g) = H(iJ)eg P(i,j).

> Let W(i) = > geqiy m(8)-
» Then,
w(i) .
— i\ J € La
Zj W(j)

is the stationary distribution of the Markov chain.



The invariant measure of ZV
> Recall the one-step transition probabilities of ZN:

P(Ki7 KJ) ~ exp{—N\N/(K,-, KJ)}

> Let W(K,) = mingec(,-) Z(m,n)eg V(Km, Kn).
» By the Markov chain tree theorem, the the invariant measure
of ZN satisfies

IN(K;) ~ exp{—=N(W(i) — min W())}-

» Reconstruct gy from vy and show that

pn(Ki) ~ exp{=N(W(i) — min W(j))}-



Large deviations of the invariant measure

Theorem
In the case of multiple equilibria, {pn} satisfies the LDP with rate

function

V(€) = min [W(Ki) + V(K;, )] = min W(K))

01 02 03 o4 g5 6§ 07 08 g9
Y 3



Some applications of the LDP

> Exit times:
> The mean exit time from K; is of the order exp{NV/(K;)},
where V(K;) = min; V(Ki, K;).
> Mixing time of up:
» There is a constant A > 0 such that uy mixes well when the
time is of the order exp{NA}.
» Proof via the exploration of equilibria. Mean passage times are
of the order exp{ NV}, and has probability at least exp{—Ne}.



Summary of Section 2

P> A primer on large deviations.

» The process-level large deviations of the empirical measure
process {1y}
» Get the LDP for a non-interacting system using Sanov’s
theorem.
» Use Varadhan's lemma to transfer it to {pn}.
» Large deviations of the family of invariant measures {pp}.
» The unique attractor case: Identify the rate function from a
recursion.

» The multiple attractor case: ldentify the values on the
attractors.



Section 3

Variations - Two time-scales
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Outline of Section 3

» Variations:

» A two time scale mean-field model.
» Process-level large deviations of the empirical measure process.

» Phenomena:
> A countable state mean-field model.
P Large deviations of the family of invariant measures.

» Summary and some open questions.



A two

v

v

time scale mean-field model

N particles and an environment.
At time t,

> The state of the nth particle is XV(t) € Z;

> The state of the environment is Yy(t) € V.
Certain allowed transitions.

> Particles: a directed graph (Z,£z);

» Environment: a directed graph (), Ey).

Empirical measure of the system of particles at time t:

N
1
pn(t) = Nz5an(t) € My(2).
n=1

We are given functions A ;(-,y), (i,j) € €z, y € Y and
Yy () (v, ¥') € Ey on My(Z).
Markovian evolution at time t:

> Particles: i — j at rate A; j(un(t), Yn(t));

» Environment: y — y’ at rate Ny, ,/(pn(t)).



An example: Constant rate retrial systems

Orbit queue 1

Stream 1 FO |:<_|

Orbit queue 2

Stream 2 ro |:<_|

Y

Y

Orbit queue N

Stream N FO |:<_|

Y

» N queues (particles), and a single server (environment).
» The server becomes busy at rate N(\ + a(1 — upn(t)(0))).



A two time scale mean-field model
» (un, Yn) is a Markov process with the transition rates

(€, y) — &) at rate N, /(€)
5 , .
Y (+%-%) atrate NEN(E,).
> A “fully coupled” two time scale process.
» Assumptions:
» The graphs (£,€z) and (), Ey) are irreducible.
» The functions A; (-, y) are Lipschitz continuous and
infe i j(&,y) >0 forall (i,j) € £z and y € V.
» The functions v, ,/(-) are continuous and inf¢ v, ,/(§) > 0 for
all (y,y’') € &y.



The occupation measure process

v

Fix a time duration T > 0.
View pin as a random element of D([0, T], M1(2)).
Consider the occupation measure of the fast environment:

t
9/\/(1‘)() Z:/O 1{yN(5)€,}dS, 0<t<T.

On is a random element of Dy([0, T], M())), the set of §
such that ; — 0s € M()) and 0:()) =tfor0<s<t<T.

We can write 0 as 0(dydt) = m(dy)dt where m; € My (D).

We consider the process (i, 0y) with sample paths in
D([0, T], M1(Z2)) x Dy([0, T], M(Y)).



The averaging principle

» Suppose we freeze pp(t) to be £&. Then for large N,
» The Yy process would quickly equilibrate to ¢, the unique
invariant probability measure of

Leg(y) = Y. (&)= &) wy(&).y €Y.
y'(y.y')EEY
> For a particle, an (/,/) transition occurs at rate
Yoyey A& y)me(y) =2 Aij(€ me).
Theorem (Bordenave et al. 2009)

Suppose that un(0) — v in M1(Z). Then un converges in
probability, in D([0, T], M1(Z)), to the solution to the ODE

ut = /_\L’ﬂ‘utut’ 0 S t S Tv Ho = V.

where /_\umm(i,j) = S\;J(/Lt,wut).
» . is a small random perturbation of the above ODE. We
study the large deviations of (uy, Oy).



Main result

Theorem

Suppose that {{1n(0)}n>1 satisfies the LDP on M1 (Z) with rate
function ly. Then the sequence {(pn(t),On(t)),0 <t < T}y>1
satisfies the LDP on D([0, T], M1(Z2)) x D4([0, T], M(Y)) with

rate function
(1, 60) = l(1(0)) + J(11,0).

Typical (un, On)

A deviation.
Prob ~ e~ N(10),




The rate function J

J(u,0) = /[o,T]{ sup (<a (ﬂt—/_\,ft,mtut)>

a€cRIZ|
3 el - Al ml)
(i)ez
+ sup Z(—ng(y)
geRMl ey

- > ey - g(y))vy,y/(ut)> mt(y)} dt

y'i(y.y')EEY
whenever the mapping [0, T] 5 t — p¢ € M1(Z) is absolutely

continuous, where (dtdy) = m¢(dy)dt, and J(u,0) = +oo
otherwise.

> 7(u)=e"—u—-1ueR



Some remarks about the rate function

> J(1,0) > 0 with equality iff (u,0) satisfies the mean-field
limit.
» Two parts. The mean-field part (slow component) and
occupation measure part (fast component).
» For the slow component, the average of the fast variable
appears.
» For the fast component, the slow variable is frozen.

» For occupation measure of Markov processes, the canonical
form of the rate function is f[O,T] SUPps0 Dy — L“,f(l;()” my(y)dt
(Donsker and Varadhan, 1973). This can be obtained by

taking h = e8.




Large deviations of 1y

Corollary
{un} satisfies the LDP on D([0, T], M1(Z2)) with rate function

p = lo(po) + inf J(p, 6).

» Follows from contraction principle since the mapping
(14, 0) — p is continuous.

» Can quantify rare transitions.

Mi(2)



Outline of the proof

| 2

>
>

We use the method of stochastic exponentials (Pulahskii
2016, 1994).

Show exponential tightness. This gives a subsequential LDP.

Get a condition for any subsequential rate function (in terms
of an exponential martingale).

Identify the subsequential rate function on “nice” elements of
the space.

Extend to the whole space using suitable approximations.

Unique identification any subsequential rate function
(regardless of the subsequence) implies the LDP.



An exponential martingale

» If N; is the unit rate Poisson point process, then N; — t is a
martingale.

» Recall that
r(a) = log E(exp{a(Ny — 1)}).
» One can verify that
exp{a(N; — t) — ()t}

is a martingale for all .

> We get a necessary condition for the subsequential rate
function in terms of such exponential martingales.



Exponential tightness

Theorem

The sequence {(un(t),On(t)),t € [0, T]}n>1 is exponentially
tight in D([0, T], M1(Z)) x D4([0, T], M(Y)), i.e., given any
M > 0, there exists a compact set Ky such that

lim sup%IogP({(,uN(t),ON(t)),O <t<T}¢Ky)<-—M.

N—oo
For 8> 0 and a € RIZ|, with Xy ; = (a, un(t)),
t
eXP{N(ﬁxN,t — BXno — 5/ Py f(uns)ds
0
- [ 32 r5(a0) ~ s YN,S)MN,s(i)ds) } £>0,
(i)

is an exponential martingale. Use Doob’s inequality and a condition
for exponential tightness in D([0, T],R) (Puhalskii, 1994).



An equation for the subsequential rate function

> Let {(un,,0n, ) k>1 be a subsequence that satisfies the LDP
with rate function /.

> Let a: [0, T] x M1(Z) — RIZl and
g:]0,T] x Mi1(Z) x Y — R be bounded measurable, and
continuous on Mj(Z2).

» Define U;"¢ (1, 0) by

<as(ﬂs)7 /ls - /_\Ts,ms,us>
0.1 !

= > m(as(us) () — as(us) ()i (s, ms)us(i)
(i)

+ Z< - Lﬂsgs(ﬂa )(Y)

y

© Y rleliey) - el ) ml) f o

yi(y.y')eEy



An equation for the subsequential rate function

» We can show that, for each « and g,

sup (UF%(u,0) — T(1,6)) =0, (1)
(p,0)er

where T is the set of (i, ) such that t — pu; absolutely
continuous.
» On one hand, for a smaller class of « and g,

E exp{ NUT® (uun, On) + VE(un, Yn)} =1,

where V£ is O(1) as.
» On the other hand, Varadhan's lemma implies that

lim ——log E exp{ Nk UT% (1w, On, ) + VE(ian,> Yo )}
k—o00 Nk

= Ssup (U('Il'yg(ua 6) - 7(M7 9))
(n.9)

This can be extended to (1).
» Moreover, the supremum in (1) is attained.



A candidate rate function

» Recall that sup(uﬂ)er(U‘;‘-’g(u,H) — I(p,0)) = 0.
» A natural candidate for the rate function

I*(u,0) = sup U7 (u, 0).-
a7g

» It can be shown that /* = J.
» Note that 72 I* on . Qutside I', I* can be shown to be +o0.

» Goal: show that | < I* whenever I* < +00. Once this is
established, the LDP follows.



Identification of | on “nice” elements

>

vvyyywy

Suppose (f1,0) is such that /*({,0) < +o0, and
> inf.co, 1) minjez fi:(i) > 0,
» the mapping [0, T] > t — i € M1(Z) is Lipschitz
continuous, R
> inficpo, 7 minyecy Me(y) > 0 where 0(dydt) = m.(dy)dt.

A

Then, there exists (&, &) that attains sup, , UT5(f, ).

» To show that & and g are continuous on M;(Z), we use the
Berge's maximum theorem.

With this (&, 8), get (,u, 0) that attains the supremum in
SUP(#,e)er(U (M>9) - ’( 0)) = 0.

Hence, I*(ji, 0) > U4 (@i, 6) = I(ji, 0).
Since I* < I, we get I*(fi, ) = I(fi, 0).
Show that (i, ) = (7, ).

It follows that (i, 8) = I*(2, 6).



Approximation procedure

> For general elements (72, 0), (&, &) may not exist.
> Produce (fi, f) that are “nice”, and satisfy
> (i 0) = (f1,0) as k — oo,
> [=1"on (fu,0) for all k,
> 1% (i, 0) — 1°(71, 0) as k — oo
> It then follows that I = /* on (2, 6).
> Relaxation of inf,cjo 71 minjez fit(i) > 0:

R e .

0%

» Other conditions are relaxed using suitable approximations.
We finally get | = I* for all elements.



Summary of the proof

Space “Dual” space

» For “nice” elements of D([0, T], M1(Z2)) x D4([0, T], M(D)),
we show that / = /* (convex analysis, variational problems).
> Approximate general elements using “nice” elements and pass
to the limit (parametric continuity of optimisation problems,

dominated convergence).



Section 4

Variations - Phenomena in the infinite state
space case



The running cost of following a trajectory ¢(-)

> At each time t, if the current state is ¢(t), the natural tendency is
to go along the tangent A(¢(t))7 #(t).

> To follow ¢(t) however, the system needs to work against the
McKean-Vlasov gradient and move along the tangent ¢(t).

> L(6(t), &(1))-



Guessing the running cost

2

>

>

Write ¢(t) = G(t)T (t).
By decoupling, each node's state is iid ¢(t).

Natural tendency for the N¢(t)(/) nodes in state i is to have i ~ j
at current (instantaneous) rate A; j(&(t)).

But to move along ¢(t) they must have an instantaneous rate of

G,'J(t).

The N¢(t)(i) Bernoulli(p = X; j(t) dt) random variables must have
a large deviation and must have an empirical measure close to
(g = Gjj(t) dt). By Sanov's theorem, the negative exponent is:

Ne(t)(1)D(ql|p) = N¢<r)(f)(qlogg ~q+p)

Sum over i and j and integrate over [0, T] to get the action
functional:

| et



The case of a globally asymptotically stable equilibrium &*

Theorem
V(&) is given by

T .
V() = inf{/o L((1), ¢(1)) dt | ¢(0) = €7, ¢(T) =&, T € (0,00)}-
» Any deviation that puts the system at & must have started its effort

from &£*.

> V() =0.



The path to &

Can specify not only exponent V/(£) of the probability, but also the path.

Any deviation that puts the system near g must have started from £*,
and must have taken the least cost path.



When there are multiple stable limit sets

1.4

1.2

S S S SO SO o
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e

The case of two stable equilibria is easy to describe.
» Vi» = cost of moving from &7 to &5.
» V), = cost of the reverse move.
> If Vio > V5, then vi =0 and v, = Vo — Voq.



When there are multiple stable limit sets

Theorem
V(&) is given by

V(€) = inf { + [ L0, 6(0) de | 9(0) = €5.0(T) = £.T (o,oo)} .

» Start from the global minimum &5 and move to the attractor in the
basin in which £ lies along the least cost path.

» Then move to £ along the least cost path.



Infinite state space

Q-0 00 O

» Now r = 0o
» Forward rate \r, backward rate \p. Let £* be the invariant measure.

> XM (o0) ~ ¥

> () =01~ p)pi7 i >0, where p = )\fi\rf)\b-



The “interacting particle system”, LDP, and the rate
function

» For explicit calculations, assume that the queues are noninteracting
(i.e., each evolves independently).

» We are interested in invariant measure for the empirical measure.

» The invariant measure is just the law of uy(o0) = % ZQ’ZI 6X<N)(Oo)

> (Sanov) The pupn(oo) sequence satisfies the LDP with rate function
given by relative entropy /(-||€*).



What are “reachable” points at stationarity?

> Let o(i) =1.
> (&||€*) is finite if and only if (£, ) < 0.

» Define (i) = ilogi. There are points £ for which (£,:) < oo, but
(€,9) = co. Mass is sufficiently spread out, since /(&,£*) is finite,
they are still reachable at stationarity.



Quasipotential

» Define the quasipotential as before.

V() = inf{/o L(¢(t), (1)) dt | ¢(0) = €%, &(T) =&, T € (0, OO)}

Y

T
inf sup {<¢T7 fT> - <¢0a fb> - /() <¢uaaufu>du

T reci(lo,T]x 2
T T
- / (Gur Mo o) — / S (A0G) — AN (S0) (i) du
ij

> Last two terms simplify to fOT >oijexp{fu() — fu()IAij(du)Pu(i)du

> Strategy

Choose f, = ¥(Hat(0, n,2n)). This is like ¥(n) up to n.

Then f,(j) — fa(i) < 1+ log(i + 1) for the edges in the graph.
Last two terms o (¢u, t) which integrates to a finite value.
Then let f, — ¥ as n — oo.

Then (§,9) = 00 = V() = .

v

vvyy



Infinite state space

Theorem
The rate function for the invariant measure is the relative entropy
1(-||€*), and this is not equal to the quasipotential V.

> Take a & whose mean is finite but the slightly larger ilog /i moment
is infinite.

» V comes from a finite horizon perspective. There are barriers that
are too difficult to cross in any finite time horizon, but in the
stationary regime these can be crossed leading to a finite rate
function at these points.

» A partial answer

Theorem
If Xiiv1(-) = ©(1/(i + 1)), then the rate function for the invariant

measure is indeed governed by the quasipotential.
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