Mean-field Interacting Particle Systems: Limit Laws and Large Deviations

Rajesh Sundaresan and Sarath Yasodharan

Indian Institute of Science and Brown University
SIGMETRICS/PERFORMANCE 2022
10 June 2022

Outline

1 Model description and the mean-field limit (Rajesh)

2 Large deviation from the mean field limit: finite durations and the stationary regime (Sarath)

3 Two time-scale systems (Sarath)
4 Some interesting phenomena in infinite state space systems (Rajesh)

Section 1

Model description and the mean-field limit

A mean-field SIS epidemic model

- Interacting system with N individuals
- Each node's state space: $\mathcal{Z}=\{\mathrm{S}, \mathrm{I}\}$
- Transitions:

- Dynamics depends on the "mean field". Global interaction. $\mu_{N}(t)=s=$ fraction of nodes in infectious state
- Transition rate from S to I or I to S depends on the fraction of nodes in the infectious state. $\lambda_{s, I}\left(\mu_{N}(t)\right)=\beta s(1-s)$ and $\lambda_{I, S}\left(\mu_{N}(t)\right)=1$.

Reversible versus nonreversible dynamics

- (Reversible) Gibbsian system
- Example: Heat bath dynamics
- State space $\mathcal{Z}=\{0,2, \ldots, r-1\}$
- Configuration of the N particles $x=\left(x_{1}, \ldots, x_{N}\right)$
- $E\left(\mu_{N}\right)$: Energy of a configuration $x=\left(x_{1}, \ldots, x_{N}\right)$ with mean μ_{N}
- An i to j transition takes μ_{N} to $\mu_{N}-\frac{1}{N} \delta_{i}+\frac{1}{N} \delta_{j}$

$$
\lambda_{i j}\left(\mu_{N}\right)=\frac{e^{-N E\left(\mu_{N}\right)}}{e^{-N E\left(\mu_{N}-\frac{1}{N} \delta_{i}+\frac{1}{N} \delta_{j}\right)}+e^{-N E\left(\mu_{N}\right)}}
$$

- In general, $\lambda_{i j}(\cdot)$ may result in nonreversible dynamics
- Weak interaction

Wireless Local Area Network (WLAN) interactions DCF 802.11 countdown and its CTMC caricature

- N particles accessing the common medium in a wireless LAN
- Each particle's state space: $\mathcal{Z}=\{0,1, \cdots, r-1\}$
- Transitions:

- State $=\#$ of transmission attempts for head-of-line packet
- r : Maximum number of transmission attempts before discard
- Coupled dynamics: Transition rate for success or failure depends on empirical distribution $\mu_{N}(t)$ of particles across states

Example transition rates

- Matrix of rates: $\Lambda(\cdot)=\left[\lambda_{i, j}(\xi)\right]_{i, j \in \mathcal{Z}}$.
- Assume three states, $\mathcal{Z}=\{0,1,2\}$ or $r=3$.
- Aggressiveness of the transmission $c=\left(c_{1}, c_{2}, c_{3}\right)$.
- Conventional wisdom, double the waiting time after every failure, $c_{i}=c_{i-1} / 2$.
- For μ, the empirical measure of a configuration, the rate matrix is

$$
\Lambda(\mu)=\left[\begin{array}{ccc}
-(\cdot) & c_{1}\left(1-e^{-\langle\mu, c\rangle}\right) & 0 \\
c_{2} e^{-\langle\mu, c\rangle} & -(\cdot) & c_{2}\left(1-e^{-\langle\mu, c\rangle}\right) \\
c_{3} e^{-\langle\mu, c\rangle} & 0 & -(\cdot)
\end{array}\right] .
$$

- "Activity" coefficient $a=\langle\mu, c\rangle$.

Probability of no activity $=e^{-a}$.

Mean-field interaction and dynamics

- Configuration $X^{N}(t)=\left(x_{1}(t), \ldots x_{N}(t)\right)$.
- Empirical measure $\mu_{N}(t)$: Fraction of particles in each state
- A particle transits from state i to state j at time t with rate $\lambda_{i, j}\left(\mu_{N}(t)\right)$

Studying the time-evolutions

- Tag a particle, say n_{1}. Study $X_{n_{1}}^{(N)}(\cdot)$. Marginal at n_{1}.
- Tag two particles, say n_{1}, n_{2}. Study $\left(X_{n_{1}}^{(N)}(\cdot), X_{n_{2}}^{(N)}(\cdot)\right)$, marginals at n_{1}, n_{2}.
- Study $\mu_{N}(\cdot)$.

The Markov processes, big and small

- $\left(X_{n}^{(N)}(\cdot), 1 \leq n \leq N\right)$, the trajectory of all the n nodes, is Markov
- Study $\mu_{N}(\cdot)$ instead, also a Markov process Its state space size is the set of empirical probability measures on N particles with state space \mathcal{Z}.

- Then try to draw conclusions on the original process.

The smaller Markov process $\mu_{N}(\cdot)$

- A Markov process with state space being the set of empirical measures of N nodes.
- This is a measure-valued flow across time.
- The transition $\xi \rightsquigarrow \xi+\frac{1}{N} e_{j}-\frac{1}{N} e_{i}$ occurs at rate $N \xi(i) \lambda_{i, j}(\xi)$.
- For large N, changes are small, $O(1 / N)$, at higher rates, $O(N)$. Individuals are collectively just about strong enough to influence the evolution of the measure-valued flow.
- Fluid limit : μ_{N} converges to a deterministic limit given by an ODE.

The conditional expected drift in μ_{N}

- Recall $\Lambda(\cdot)=\left[\lambda_{i, j}(\cdot)\right]$ without diagonal entries. Then

$$
\lim _{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[\mu_{N}(t+h)-\mu_{N}(t) \mid \mu_{N}(t)=\xi\right]=\Lambda(\xi)^{T} \xi
$$

with suitably defined diagonal entries.

An interpretation

- The rate of change in the k th component is made up of increase

$$
\sum_{i: i \neq k}\left(N \xi_{i}\right) \cdot \lambda_{i, k}(\xi) \cdot(+1 / N)
$$

- and decrease

$$
\left(N \xi_{k}\right) \sum_{i: i \neq k} \lambda_{k, i}(\xi)(-1 / N)
$$

- Put these together:

$$
\sum_{i: i \neq k} \xi_{i} \lambda_{i, k}(\xi)-\xi_{k} \sum_{i: i \neq k} \lambda_{k, i}(\xi)=\sum_{i} \xi_{i} \lambda_{i, k}(\xi)=\left(\Lambda(\xi)^{T} \xi\right)_{k} .
$$

The conditional expected drift in μ_{N}

- Recall $\Lambda(\cdot)=\left[\lambda_{i, j}(\cdot)\right]$ without diagonal entries. Then

$$
\lim _{h \downarrow 0} \frac{1}{h} \mathbb{E}\left[\mu_{N}(t+h)-\mu_{N}(t) \mid \mu_{N}(t)=\xi\right]=\Lambda(\xi)^{T} \xi
$$

with suitably defined diagonal entries.

- Anticipate that $\mu_{N}(\cdot)$ will solve (in the large N limit)

$$
\begin{aligned}
& \dot{\mu}(t)=\Lambda(\mu(t))^{T} \mu(t), \quad t \geq 0 \quad \text { [McKean-Vlasov equation] } \\
& \mu(0)=\nu
\end{aligned}
$$

- Nonlinear ODE.

ODE preliminaries

$$
\begin{aligned}
\dot{\mu}(t) & =F(\mu(t)), \quad t \geq 0 \\
\mu(0) & =\nu
\end{aligned}
$$

- $C\left([0, T], \mathbb{R}^{r}\right)$: space of continuous functions from $[0, T]$ to \mathbb{R}^{r}.
- Can define a norm and a distance on this space:

$$
\begin{aligned}
& \|\mu\|=\sup _{t \in[0, T]}\|\mu(t)\| \\
& d_{T}(\mu, \xi)=\|\mu-\xi\|
\end{aligned}
$$

$\rightarrow C\left([0, \infty), \mathbb{R}^{r}\right)$ with metric $d(\mu, \xi)=\sum_{T=1}^{\infty} 2^{-T}\left(d_{T}\left(\left.\mu\right|_{T},\left.\xi\right|_{T}\right) \wedge 1\right)$.

- An ODE is well-posed if
- For each $\nu \in \mathbb{R}^{r}$, the ODE has a unique solution $\mu(\cdot)$ on $[0, \infty)$
- The mapping $\nu \mapsto \mu(\cdot) \in C\left([0, \infty), \mathbb{R}^{r}\right)$ is continuous.

Theorem

If F is Lipschitz, then the $O D E$ is well-posed, and the solution can be written as $\mu(t)=\nu+\int_{0}^{t} F(\mu(s)) d s$ for $t \in \mathbb{R}_{+}$.

Convergence in probability

- $\mu_{N}(\cdot)$ a sample path (random) while $\mu(\cdot)$ some deterministic or random path
- Fix T. View $\mu_{N}(\cdot)$ (interpolated) and $\mu(\cdot)$ as elements of $C\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$.
- We say $\mu_{N}(\cdot) \rightarrow \mu(\cdot)$ if for every $\varepsilon>0$, we have

$$
\operatorname{Pr}\left\{d_{T}\left(\mu_{N}(\cdot), \mu(\cdot)\right)>\varepsilon\right\} \rightarrow 0 \text { as } N \rightarrow \infty
$$

- This is the same as asking that the path $\mu_{N}(\cdot)$ remains within any ε tube of $\mu(\cdot)$ with probability approaching 1 as $N \rightarrow \infty$.

A limit theorem

Theorem
Suppose that the initial empirical measure $\mu_{N}(0) \xrightarrow{p} \nu$, where ν is deterministic.

Assume each $\lambda_{i, j}(\cdot)$ is Lipschitz in its argument. Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics with initial condition $\mu(0)=\nu$.

Then $\mu_{N}(\cdot) \xrightarrow{p} \mu(\cdot)$.

Technicalities:

- Fix $T>0$ and $\varepsilon>0$. We will argue

$$
\begin{aligned}
\operatorname{Pr}\left\{d_{T}\left(\mu_{N}, \mu\right)>\varepsilon\right\} \leq & \operatorname{Pr}\left\{\left\|\mu_{N}(0)-\mu(0)\right\|>\varepsilon /\left(2 e^{M T}\right)\right\} \\
& +C_{1} \exp \left\{-N T \bar{\lambda} h\left(\varepsilon /\left(C_{2} T e^{M T}\right)\right)\right\}
\end{aligned}
$$

where M is the Lipschitz constant of the driving function, $\bar{\lambda}$ is the max of the transition rates, and

$$
h(t)=(1+t) \ln (1+t)-t, \quad t>-1 .
$$

Back to the individual nodes

- Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics
- Choose a node uniformly at random, and tag it.
- $\mu_{N}(\cdot)$ is the distribution for the state of the tagged node at time t.
- As $N \rightarrow \infty$, the limiting distribution is then $\mu(t)$

Joint evolution of tagged nodes

Theorem

Fix t, k. Tag k nodes at random.
Let $\left(X_{n}^{(N)}(0), 1 \leq n \leq N\right)$ be exchangeable and let $\mu_{N}(0) \xrightarrow{d} \nu$, a fixed limiting initial condition. Assume all transition rates are Lipschitz functions. Then

$$
\left(X_{n_{1}}^{(N)}(t), \ldots, X_{n_{k}}^{(N)}(t)\right) \xrightarrow{d}\left(U_{1}, \ldots, U_{k}\right)
$$

where U_{1}, \ldots, U_{k} are iid with distribution $\mu(t)$.

- If the interaction is only through $\mu_{N}(t)$, and this converges to a deterministic $\mu(t)$, the transition rates are just $\lambda_{i, j}(\mu(t))$.
- Each of the k nodes is then executing a time-dependent Markov process with transition rate matrix $\Lambda(\mu(t))$.
- Asymptotically, no interaction (decoupling). The node trajectories are (asymptotically) iid (i.e., $\mu(t) \otimes \cdots \otimes \mu(t)$).

Stationary regime

- Interest in large time behaviour for a finite N system: $\lim _{t \rightarrow \infty} \mu_{N}(t)$. If N is large, we really want:

$$
\lim _{N \rightarrow \infty}\left[\lim _{t \rightarrow \infty} \mu_{N}(t)\right]
$$

- Idea: Try to predict where the system will settle from the following:

$$
\lim _{t \rightarrow \infty}\left[\lim _{N \rightarrow \infty} \mu_{N}(t)\right]=\lim _{t \rightarrow \infty} \mu(t)
$$

A fixed-point analysis

- Solve for the rest point of the dynamical system: $\dot{\mu}(t)=\Lambda(\mu(t))^{T} \mu(t)$, i.e., solve for ξ in

$$
\wedge(\xi)^{T} \xi=0 .
$$

- If the solution is unique, say ξ^{*}, predict that the system will settle down at $\xi^{*} \otimes \xi^{*} \otimes \ldots \otimes \xi^{*}$.
- Works very well for the exponential backoff.
- Another example in the next slide

SIS system and herd immunity

- Normalise time so that recovery rate is 1 . Assume that the contact rate is β.
- In this normalisation, $\beta=R_{0}$ of the infection.
- The model is $\dot{\mu}_{1}(t)=\beta \mu_{1}(t)\left(1-\mu_{1}(t)\right)-\mu_{1}(t)$, with $\mu(0)=\nu$.
- Rest points ξ^{*} solve $\beta \xi^{*}\left(1-\xi^{*}\right)-\xi^{*}=0$
- $\xi^{*}=0$ or $\xi^{*}=1-1 / \beta$ (herd-immunity).

Issues: A malware propagation example from Benaim and Le Boudec 2008

- The fixed point is unique, but unstable.
- All trajectories starting from outside the fixed point, and all trajectories in the finite N system, converge to the stable limit cycle.

A sufficient condition when the method works

Theorem

Assume fully connected graph and Lipschitz rates.
Let $\mu_{N}(0) \rightarrow \nu$ in probability.
Let the ODE have a (unique) globally asymptotically stable equilibrium ξ^{*} with every path tending to ξ^{*}.

Then $\mu_{N}(\infty) \xrightarrow{d} \xi^{*}$.

It is not enough to have a unique fixed point ξ^{*}.
But if that ξ^{*} is globally asymptotically stable, that suffices.

A sufficient condition

A lot of effort has gone into identifying when we can ensure a globally asymptotic stable equilibrium.

Theorem
If c is such that $\langle\xi, c\rangle<1$ for all ξ, then the rest point ξ^{*} of the dynamics is unique, and all trajectories converge to it.

This is the case for the classical exponential backoff with $c_{0}<1$.

The case of multiple stable equilibria for the ODE

- Different parameters: $c=(0.5,0.3,8.0)$.
- There are two stable equilibria.

One near $(0.6,0.4,0.0)$ and another near $(0,0,1)$.

The case of multiple stable equilibria: metastability

Fraction of nodes in state 0 is near 0.6 for a long time, but then moves to 0 , and in a sequence of rapid steps.

The reverse move is a lot less frequent.

A selection principle: Preview to the second hour

- If unique globally asymptotically stable equilibrium ξ^{*}, then $\mu_{N}(\infty) \xrightarrow{d} \xi^{*}$. (Limit law).
- If we encounter multiple stable limit sets, look at probability of a large deviation.
- Characterise the exponent in

$$
\operatorname{Pr}\left\{\mu_{N}(\infty) \in \text { neighbourhood of } \xi\right\} \sim \exp \{-N V(\xi)\}
$$

- The locations $\{\xi: V(\xi)=0\}$ should "select" the correct limit set.
- $V(\xi)$ is called a quasipotential (Freidlin-Wentzell).

Quasipotential $V(\xi)$

The case of a (unique) globally asymptotically stable equilibrium for the McKean-Vlasov dynamics: $V\left(\xi^{*}\right)=0$.

Quasipotential $V(\xi)$

The case of a unique but unstable rest point. $V\left(\xi^{*}\right)>0$.
All trajectories converge to the stable limit cycle.

Quasipotential $V(\xi)$

The case of two stable equilibria.
The selection is the one that has the deepest shade of blue $\left(V\left(\xi_{1}^{*}\right)=0\right)$.

Quasipotential $V(\xi)$

A qualitative picture for the case $c=(0.5,0.3,8.0)$.
The two stable points are $(0.6,0.4,0.0)$ and ($0.0,0.0,1.0$).
The latter is a truer representative of the large time behaviour.

Proofs: First Kurtz's theorem

Theorem
Suppose that the initial empirical measure $\mu_{N}(0) \xrightarrow{p} \nu$, where ν is deterministic.

Assume each $\lambda_{i, j}(\cdot)$ is Lipschitz in its argument. Let $\mu(\cdot)$ be the solution to the McKean-Vlasov dynamics with initial condition $\mu(0)=\nu$.

Then $\mu_{N}(\cdot) \xrightarrow{p} \mu(\cdot)$.

Technicalities:

- Fix $T>0$ and $\varepsilon>0$. We will argue

$$
\begin{aligned}
\operatorname{Pr}\left\{d_{T}\left(\mu_{N}, \mu\right)>\varepsilon\right\} \leq & \operatorname{Pr}\left\{\left\|\mu_{N}(0)-\mu(0)\right\|>\varepsilon /\left(2 e^{M T}\right)\right\} \\
& +C_{1} \exp \left\{-N T \bar{\lambda} h\left(\varepsilon /\left(C_{2} T e^{M T}\right)\right)\right\}
\end{aligned}
$$

where M is the Lipschitz constant of the driving function, $\bar{\lambda}$ is the max of the transition rates, and

$$
h(t)=(1+t) \ln (1+t)-t, \quad t>-1 .
$$

Proofs: Proof of Kurtz's theorem

- Time change. Let $M(\cdot)$ be a unit rate Poisson point process (PPP). Then $M\left(\int_{0}^{*} \lambda(s) d s\right)$ is a time-inhomogeneous PPP with instantaneous rate $\lambda(\cdot)$.
- Let $\left(M_{i, j}(\cdot)\right)_{i, j}$ be independent unit-rate PPP.

$$
\begin{aligned}
\mu_{N}(t) & =\mu_{N}(0)+\sum_{i, j}\left(\frac{\delta_{j}-\delta_{i}}{N}\right) M_{i, j}\left(\int_{0}^{t} N \mu_{N}(s)(i) \lambda_{i, j}\left(\mu_{N}(s)\right) d s\right) \\
& =\mu_{N}(0)+\int_{0}^{t} F\left(\mu_{N}(s)\right) d s+\sum_{i, j}\left(\frac{\delta_{j}-\delta_{i}}{N}\right) \bar{M}_{i, j}(\cdot)
\end{aligned}
$$

- Martingale noise $\bar{M}_{i, j}(t)$ is of the form $M_{i, j}(t)-t$
- By triangle inequality and Lipschitz,

$$
\begin{aligned}
\left\|\mu_{N}(t)-\mu(t)\right\| & \leq\left\|\mu_{N}(0)-\mu(0)\right\|+\int_{0}^{t}\left\|F\left(\mu_{N}(s)\right)-F(\mu(s))\right\| d s+\| \text { noise } \| \\
& \left.\leq\left\|\mu_{N}(0)-\mu(0)\right\|+M \int_{0}^{t} \| \mu_{N}(s)\right)-\mu(s)\|d s+\| \text { noise } \|
\end{aligned}
$$

- Then Poisson concentration and Gronwall.

Proofs: Marginal

$X_{n_{1}}^{(N)}(t) \xrightarrow{d} U_{1}$ where U_{1} is a random variable with distribution $\mu(t)$.

- Take any bounded test function ϕ on \mathcal{Z}.
- Suffices to show $\mathbb{E}\left[\phi\left(X_{n_{1}}^{(N)}(t)\right)\right] \rightarrow \mathbb{E}\left[\phi\left(U_{1}\right)\right]$

$$
\begin{aligned}
\mathbb{E}\left[\phi\left(X_{n_{1}}^{(N)}(t)\right)\right] & =\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N} \phi\left(X_{n}^{(N)}(t)\right)\right] \\
& =\mathbb{E}\left[\left\langle\mu_{N}(t), \phi\right\rangle\right] \\
& \rightarrow\langle\mu(t), \phi\rangle \\
& =\mathbb{E}\left[\phi\left(U_{1}\right)\right]
\end{aligned}
$$

Proofs: Double marginal

$\left(X_{n_{1}}^{(N)}(t), X_{n_{2}}^{(N)}(t)\right) \xrightarrow{d}\left(U_{1}, U_{2}\right)$, where U_{1} and U_{2} are iid $\sim \mu(t)$.

- Take any two bounded test functions ϕ_{1} and ϕ_{2} on \mathcal{Z}.
- Suffices to show $\mathbb{E}\left[\phi_{1}\left(X_{n_{1}}^{(N)}(t)\right) \phi_{2}\left(X_{n_{1}}^{(N)}(t)\right] \rightarrow \mathbb{E}\left[\phi_{1}\left(U_{1}\right)\right] \mathbb{E}\left[\phi_{2}\left(U_{2}\right)\right]\right.$

$$
\begin{aligned}
& \mathbb{E}\left[\phi_{1}\left(X_{n_{1}}^{(N)}(t)\right) \phi_{2}\left(X_{n_{1}}^{(N)}(t)\right)\right]-\mathbb{E}\left[\phi_{1}\left(U_{1}\right)\right] \mathbb{E}\left[\phi_{2}\left(U_{2}\right)\right] \\
&= \mathbb{E}\left[\phi_{1}\left(X_{n_{1}}^{(N)}(t)\right) \phi_{2}\left(X_{n_{1}}^{(N)}(t)\right)\right]-\mathbb{E}\left[\prod_{l=1}^{2}\left\langle\mu_{N}(t), \phi_{l}\right\rangle\right] \\
&+\mathbb{E}\left[\prod_{l=1}^{2}\left\langle\mu_{N}(t), \phi_{l}\right\rangle\right]-\mathbb{E}\left[\phi_{1}\left(U_{1}\right)\right] \mathbb{E}\left[\phi_{2}\left(U_{2}\right)\right] \\
&= \mathbb{E}\left[\frac{1}{N(N-1)} \sum_{n_{1} \neq n_{2}} \phi_{1}\left(X_{n_{1}}^{(N)}(t)\right) \phi_{2}\left(X_{n_{1}}^{(N)}(t)\right)\right] \\
&-\mathbb{E}\left[\left(\frac{1}{N} \sum_{n_{1}} \phi_{1}\left(X_{n_{1}}^{(N)}(t)\right)\right)\left(\frac{1}{N} \sum_{n_{2}} \phi_{2}\left(X_{n_{2}}^{(N)}(t)\right)\right)\right] \\
&+\mathbb{E}\left[\prod_{l=1}^{2}\left\langle\mu_{N}(t), \phi_{l}\right\rangle\right]-\prod_{l=1}^{2}\left\langle\mu(t), \phi_{l}\right\rangle
\end{aligned}
$$

Proofs: Globally asymptotically stable equilibrium and stationary regime

Globally asymptotically stable equilibrium $\Rightarrow \mu_{N}(\infty) \xrightarrow{d} \xi^{*}$.

- $\pi_{N}:=\operatorname{Law}\left(\mu_{N}(0)\right)$, invariant measure. Then $\pi_{N}=\operatorname{Law}\left(\mu_{N}(t)\right)$ also.
- Compactness implies subsequential limits $\pi_{N_{I}} \rightarrow \pi$.
- $\pi=\pi \circ \Phi_{t}^{-1}$, under the McKean-Vlasov flow Φ_{t}
- Compactness of the space, Liapunov stability, Gronwall implies that for every $\varepsilon>0$, there is a T such that $\forall t>T$, we have support of $\left(\pi \circ \Phi_{t}^{-1}\right) \subset B_{\varepsilon}\left(\xi^{*}\right)$ for all $t>T$.
- So support of π is within a ball of ε around ξ^{*}.
- $\varepsilon>0$ is arbitrary. So support of π is $\left\{\xi^{*}\right\}$ and $\pi=\delta_{\xi^{*}}$, unique.

Section 2

Large deviations of mean-field models

Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 2: Large Deviations of Mean-Field Models

SIGMETRICS/PERFORMANCE 2022

Recall the mean-field model

- N particles. The state of the nth particle is $X_{n}^{N}(t) \in \mathcal{Z}$. The empirical measure at time t is

$$
\mu_{N}(t)=\frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)}
$$

- An $i \rightarrow j$ transition occurs at rate $\lambda_{i, j}\left(\mu_{N}(t)\right)$.
- The McKean-Vlasov equation:

$$
\dot{\mu}_{t}=\Lambda\left(\mu_{t}\right)^{T} \mu_{t}, t \geq 0
$$

- We will now quantify various rare events associated with $\left\{\mu_{N}\right\}$.

Outline of Section 2

- An introduction to large deviations.
- Basic definitions, some examples.
- Process-level large deviations of the family $\left\{\mu_{N}\right\}$.
- A change of measure argument.
- Large deviations of the invariant measure of μ_{N}.

A primer on large deviations

Large deviation principle (LDP)

- Let S be a complete and separable metric space. Let $\left\{X_{N}, N \geq 1\right\}$ be a sequence of S-valued random variables.
- Roughly, $P\left(X_{N} \in A\right) \sim \exp \left\{-N \inf _{x \in A} I(x)\right\}$.
- Here, $I: S \rightarrow[0, \infty]$ is called the rate function.

Large deviation principle (LDP)

Definition

$\left\{X_{N}, N \geq 1\right\}$ is said to satisfy the LDP on S with rate function / if

- (Compactness of level sets). For any $s \geq 0$, $\Phi(s):=\{x \in S: I(x) \leq s\}$ is a compact subset of S;
- (LDP lower bound). For any $\gamma>0, \delta>0$, and $x \in S$, there exists $N_{0} \geq 1$ such that

$$
P\left(d\left(X_{N}, x\right)<\delta\right) \geq \exp \{-N(I(x)+\gamma)\}
$$

for any $N \geq N_{0}$;

- (LDP upper bound). For any $\gamma>0, \delta>0$, and $s>0$, there exists $N_{0} \geq 1$ such that

$$
P\left(d\left(X_{N}, \Phi(s)\right) \geq \delta\right) \leq \exp \{-N(s-\gamma)\}
$$

for any $N \geq N_{0}$.

Example: Sanov's theorem

- Let S be a Polish space. Let μ be a probability measure on S.
- Let $X_{1}, X_{2}, \ldots, X_{N}$ be i.i.d. μ.
- Define the empirical measure

$$
\mu_{N}=\frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}}
$$

- This is an $\mathcal{M}_{1}(S)$-valued random
 variable.
- By the weak law of large numbers, $\mu_{N} \rightarrow \mu$ in $\mathcal{M}_{1}(S)$ as $N \rightarrow \infty$, in probability.
- But there is a positive probability for μ_{N} to be close to $\nu \neq \mu$.

Theorem (Sanov)

$\left\{\mu_{N}, N \geq 1\right\}$ satisfies the LDP on $\mathcal{M}_{1}(S)$ with rate function $I(\cdot \| \mu)$.

The D-space

- Let S be a complete and seperable metric space.
- Fix $T>0$. Let $D([0, T], S)$ denote the space of S-valued functions on $[0, T]$ that are
- Right continuous at each $t \in[0, T)$, and
- Possesses left limits at each $t \in(0, T]$.
- Examples:
- All continuous functions on $[0, T]$.
- Trajectories of a Poisson point process.

The D-space

- We can define a distance function on D that takes into account small time perturbations.

- Under this metric, D is a complete and seperable metric space.

Example: LDP on the space of trajectories

- Consider the unit rate Poisson point process $X(t)$ for $t \in[0, T]$.

- X is a $D([0, T], \mathbb{R})$-valued random variable.

Example: LDP on the space of trajectories

- Consider the time-scaled and amplitude-scaled process: $\frac{1}{N} X(N t)$.

Example: LDP on the space of trajectories

- Consider the time-scaled and amplitude-scaled process: $\frac{1}{N} X(N t)$.

Example: LDP on the space of trajectories

- Consider the time-scaled and amplitude-scaled process: $\frac{1}{N} X(N t)$.

Example: LDP on the space of trajectories

- Consider the time-scaled and amplitude-scaled process: $\frac{1}{N} X(N t)$.

- The process $\frac{1}{N} X(N t)$ is a small random perturbation of the ODE

$$
\dot{x}(t)=1, x(0)=0, t \in[0,1] .
$$

Example: LDP on the space of trajectories

- Question: probability that $\frac{1}{N} X(N t)$ tracks a given function φ ?

- One can show that $\left\{\frac{1}{N} X(N t), N \geq 1\right\}$ satisfies the LDP on $D([0, T], \mathbb{R})$ with rate function

$$
S(\varphi)=\int_{[0, T]} \tau^{*}(\dot{\varphi}(t)-1) d t
$$

if $t \mapsto \varphi(t)$ is absolutely continuous, increasing, and $\varphi(0)=0$; $S(\varphi)=\infty$ otherwise.

- Here,

$$
\tau^{*}(x)= \begin{cases}(x+1) \log (x+1)-x, & \text { if } x \geq-1 \\ \infty, & \text { if } x<-1\end{cases}
$$

A closer look at the rate function

$$
S(\varphi)=\int_{[0, T]} \tau^{*}(\dot{\varphi}(t)-1) d t
$$

- τ^{*} is the convex dual of $\tau(u)=e^{u}-u-1, u \in \mathbb{R}$;

$$
\tau^{*}(t)=\sup _{u}(u t-\tau(u)), t \in \mathbb{R} .
$$

- So,

$$
S(\varphi)=\int_{[0, T]} \sup _{u}(u(\dot{\varphi}(t)-1)-\tau(u)) d t
$$

- Such variational forms will appear later.

Contraction principle

- S, T are metric spaces. $f: S \rightarrow T$ is continuous.
- $\left\{X_{N}\right\} s$ are S-valued random variables. Define $Y_{N}=f\left(X_{N}\right)$.

Theorem (Contraction Principle)
If $\left\{X_{N}\right\}$ satisfies the LDP with rate function I, then $\left\{Y_{N}\right\}$ satisfies the LDP with rate function

$$
J(y)=\inf _{x \in S: y=f(x)} I(x)
$$

A new LDP from change of measure

- Let $\left\{P_{N}\right\}$ satisy the LDP with rate function I.
- Let Q_{N} be such that

$$
\frac{d Q_{N}}{d P_{N}}(x)=\exp \{N f(x)\}
$$

for some $f: S \rightarrow \mathbb{R}$, bounded and continuous.

- Additionally, suppose that $\left\{Q_{N}\right\}$ is exponentially tight: Given $M>0$, there exists a compact set K_{M} such that $Q_{N}\left(K_{M}^{c}\right) \leq \exp \{-N M\}$ for all N.
- Then, $\left\{Q_{N}\right\}$ satisfies the LDP with rate function $I(x)-f(x)$.

A new LDP from change of measure

- Lower bound: For $x \in S$ and $\delta>0$,

$$
\begin{aligned}
Q_{N}\left(d\left(X_{N}, x\right)<\delta\right) & =E^{Q_{N}}\left(\mathbf{1}_{\left\{X_{N} \in B(x, \delta)\right\}}\right) \\
& =E^{P_{N}}\left(\exp \left\{N f\left(X_{N}\right)\right\} \mathbf{1}_{\left\{X_{N} \in B(x, \delta)\right\}}\right) \\
& \geq \exp \{N(f(x)-\varepsilon)\} P_{N}\left(X_{N} \in B(x, \delta)\right) \\
& \geq \exp \{-N(I(x)-f(x)+2 \varepsilon)\} .
\end{aligned}
$$

- Upper bound: For a closet set F,

$$
\begin{aligned}
Q_{N}(F) & \leq Q_{N}\left(K_{M}^{c}\right)+Q_{N}\left(F \cap K_{M}\right) \\
& \leq \exp \{-N M\}+Q_{N}\left(F \cap K_{M}\right)
\end{aligned}
$$

- Since $F \cap K_{M}$ is compact, we can cover it using a finite number of balls. For the ith ball,

$$
Q_{N}\left(\bar{B}\left(x_{i}, \delta\right)\right) \leq \exp \{-N(I(x)-f(x)-\varepsilon)\} .
$$

Varadhan's lemma

Theorem
Let $f: S \rightarrow \mathbb{R}$ be bounded and continuous. Suppose that $\left\{X_{N}\right\}$ satisfies the LDP with rate function I. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log E\left(\exp \left\{N f\left(X_{N}\right)\right\}\right)=\sup _{x \in S}(f(x)-I(x))
$$

- By the LDP,

$$
E\left(\exp \left\{N f\left(X_{N}\right)\right\} \mathbf{1}_{\left\{X_{N \sim x}\right.}\right) \sim \exp \{N f(x)\} \exp \{-N I(x)\}
$$

- The leading terms in the expectation are those $x \in S$ for which $f(x)-I(x)$ is the largest.

Large deviations of the empirical measure process

Recall the empirical measure process

- $\mu_{N}(t) \rightarrow \mu_{N}(t)+\frac{\delta_{j}}{N}-\frac{\delta_{i}}{N}$ at rate $N \mu_{N}(t)(i) \lambda_{i, j}\left(\mu_{N}(t)\right)$.
- Recall the McKean-Vlasov equation:

$$
\dot{\mu}_{t}=\Lambda\left(\mu_{t}\right)^{T} \mu_{t}, t \geq 0
$$

- From Section 1, if $\mu_{N}(0) \rightarrow \nu$ in $\mathcal{M}_{1}(\mathcal{Z})$, then $\mu_{N}(\cdot) \rightarrow \mu(\cdot)$ in $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$, in probability.
- We now present the large deviations of μ_{N}. McKean-Vlasov trajectory

Large deviations of μ_{N}

Theorem
Let $\mu_{N}(0) \rightarrow \nu$ in $\mathcal{M}_{1}(\mathcal{Z})$. Then μ_{N} satisfies the LDP on $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$ with rate function $S_{[0, T]}(\cdot \mid \nu)$ defined as follows. If $\mu_{0}=\nu$ and $[0, T] \ni t \mapsto \mu_{t} \in \mathcal{M}_{1}(\mathcal{Z})$ is absolutely continuous,

$$
\begin{aligned}
S_{[0, T]}(\mu \mid \nu)= & \int_{[0, T]} \sup _{\alpha \in \mathbb{R}^{|\mathcal{Z}|}}\left\{\left\langle\alpha, \dot{\mu}_{t}-\Lambda\left(\mu_{t}\right)^{T} \mu_{t}\right\rangle\right. \\
& \left.-\sum_{(i, j) \in \mathcal{E}} \tau(\alpha(j)-\alpha(i)) \lambda_{i, j}\left(\mu_{t}\right) \mu_{t}(i)\right\} d t
\end{aligned}
$$

else $S_{[0, T]}(\mu \mid \nu)=\infty$. Here, $\tau(u)=e^{u}-u-1$.

An interpretation of the rate function

- Consider a path $\dot{\mu}_{t}=G(t)^{T} \mu_{t}$.

- In a small time around t, for an $i \rightarrow j$ transition,
- The usual rate is $\operatorname{Bernoulli}\left(p=\lambda_{i, j}(\mu(t)) d t\right)$.
- The new rate is $\operatorname{Bernoulli}\left(q=G_{i, j}(t) d t\right)$.
- By Sanov's theorem, the infinitesimal cost of this change is

$$
I(\operatorname{Bernoulli}(q) \| \operatorname{Bernoulli}(p))=\left(q \log \frac{q}{p}-q+p\right)
$$

- Accumulate these costs over $[0, T]$ to get the rate function.

LDP for $\left\{\mu_{N}\right\}$ - proof sketch

- Consider a system of non-interacting particles.
- $\lambda_{i, j}(\xi)=1$ for all $\xi \in \mathcal{M}_{1}(\mathcal{Z})$ and $(i, j) \in \mathcal{E}$.
- Define the empirical measure on paths

$$
\bar{\mu}_{N}=\frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}}
$$

- This is a $\mathcal{M}_{1}(D([0, T], \mathcal{Z}))$ valued random variable.
- $\bar{\mu}_{N}(t)=\bar{\mu} \circ \pi_{t}^{-1}$, where π_{t} is the projection mapping

$$
D([0, T], \mathcal{Z}) \ni \varphi \mapsto \varphi(t) \in \mathcal{M}_{1}(\mathcal{Z})
$$

- Let \bar{P}_{z} denote the law of a particle starting at z.
- If $X_{n}^{N}(0)=z$ for all n, then by Sanov's theorem, $\left\{\bar{\mu}_{N}\right\}$ satisfies the LDP with rate function $Q \mapsto I\left(Q \| \bar{P}_{z}\right)$.

LDP for $\left\{\mu_{N}\right\}$ - proof sketch

- When $\bar{\mu}_{N}(0) \rightarrow \nu$, then a generalisation of Sanov's theorem gives the LDP for $\left\{\bar{\mu}_{N}\right\}$ with rate function

$$
J(Q)=\sup _{f \in C_{b}(D)}\left[\int_{D} f d Q-\sum_{z \in \mathcal{Z}} \nu(z) \log \int_{D} e^{f} d \bar{P}_{z}\right]
$$

(Dawson and Gärtner, 1987).

- In particular, when $\nu=\delta_{z}, J(Q)=I\left(Q \| \bar{P}_{z}\right)$.
- By Jensen's inequality, $J(Q) \geq I\left(Q \| \sum_{z} \nu(z) \bar{P}_{z}\right)$.

A change of measure

- Consider two probability measures: $P \sim \operatorname{Poisson}\left(\lambda_{1}\right)$, and $Q \sim \operatorname{Poisson}\left(\lambda_{2}\right)$.
- We have

$$
P(k)=\frac{\lambda_{1}^{k} \exp \left\{-\lambda_{1}\right\}}{k!}, k \geq 0
$$

and similarly $Q(k)$.

- So,

$$
\begin{aligned}
\frac{Q(k)}{P(k)} & =\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \exp \left\{-\left(\lambda_{2}-\lambda_{1}\right)\right\} \\
& =\exp \left\{k \log \left(\frac{\lambda_{2}}{\lambda_{2}}\right)-\left(\lambda_{2}-\lambda_{1}\right)\right\}
\end{aligned}
$$

A change of measure

- More generally, let $P($ resp. $Q)$ be the law of the Poisson point process with rate λ_{1} (resp. λ_{2}).
- Both P and Q are probability measures on $D\left([0, T], \mathbb{Z}_{+}\right)$.
- By Girsanov's theorem,

$$
\frac{d Q}{d P}(x)=\exp \left\{\sum_{0 \leq t \leq T} \mathbf{1}_{\left\{x_{t} \neq x_{t-}\right\}} \log \left(\frac{\lambda_{2}}{\lambda_{1}}\right)-\int_{[0, T]}\left(\lambda_{2}-\lambda_{1}\right) d t\right\}
$$

for $x \in D\left([0, T], \mathbb{Z}_{+}\right)$.

LDP for $\left\{\mu_{N}\right\}$ - proof sketch

- Let $\mathbb{P}_{N}\left(\right.$ resp. $\left.\overline{\mathbb{P}}_{N}\right)$ be the law of the interacting (resp. non-interacting) system.
- By Girsanov's theorem,

$$
\frac{d \mathbb{P}_{N}}{d \overline{\mathbb{P}}_{N}}(Q)=\exp \{N h(Q)\}, Q \in \mathcal{M}_{1}(D)
$$

where,

$$
\begin{aligned}
& h(Q)=\int_{D} h_{1}(x, Q) Q(d x), \\
& h_{1}(x, Q)= \sum_{0 \leq t \leq T} \mathbf{1}_{\left\{x_{t} \neq x_{t-}\right\}} \log \lambda_{x_{t-}, x_{t}}(Q(t-)) \\
&-\int \sum_{j:\left(x_{t-}, j\right) \in \mathcal{E}}\left(\lambda_{x_{t-}, j}(Q(t-))-1\right) d t .
\end{aligned}
$$

LDP for $\left\{\mu_{N}\right\}$ - proof sketch

- However, h is neither bounded nor continuous.
- Consider a subspace of $\mathcal{M}_{1}(D)$:

$$
M_{1, \varphi}(D)=\left\{Q \in \mathcal{M}_{1}(D): \int_{D} \varphi d Q<\infty\right\}
$$

where, $\varphi: D \rightarrow \mathbb{R}_{+}$is the function $\varphi(x)=\sum_{0 \leq t \leq T} \mathbf{1}_{\left\{x_{t} \neq x_{t-}\right\}}$.

- Show that h is continuous at all points in $M_{1, \varphi}(D)$.
- Then show that $\left\{\gamma_{N}\right\}$ satisfies the LDP with rate function $Q \mapsto J(Q)-h(Q)$.
- By the contraction principle, $\left\{\mu_{N}(t)\right\}$ satisfies the LDP with rate function $S_{[0, T]}(\cdot \mid \nu)$.

Large deviations in the stationary regime

The unique attractor case

- Recall the empirical measure process μ_{N}. Let \wp_{N} be its unique invariant probability measure.
- \wp_{N} is the law of $\mu_{N}(\infty)$. It is a probability measure on $\mathcal{M}_{1}(\mathcal{Z})$.
- Recall the McKean-Vlasov equation

$$
\dot{\mu}_{t}=\Lambda\left(\mu_{t}\right)^{T} \mu_{t}, t \geq 0
$$

- Suppose that ξ^{*} is the unique globally asymptotically stable equilibrium of the McKean-Vlasov equation.
- From Section $1, \mu_{N}(\infty)$ converges to ξ^{*} in distribution as $N \rightarrow \infty$.
- We now study the large deviations of $\left\{\wp_{N}\right\}$.

LDP for the terminal time

- Consider the random variable $\mu_{N}(T)$.
- The mapping

$$
D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right) \ni \varphi \mapsto \varphi(T) \in \mathcal{M}_{1}(\mathcal{Z})
$$

is continuous.

- Let $\mu_{N}(0) \rightarrow \nu$. By the contraction principle, $\left\{\mu_{N}(T)\right\}$ satisfies the LDP with rate function

$$
S_{T}(\xi \mid \nu)=\inf \left\{S_{[0, T]}(\mu \mid \nu): \mu(0)=\nu, \mu(T)=\xi\right\}
$$

LDP for the joint law $\left(\mu_{N}(0), \mu_{N}(T)\right)$

- So far, we assumed $\mu_{N}(0) \rightarrow \nu$.
- Suppose we start at stationarity, i.e., the law of $\mu_{N}(0)$ is \wp_{N}. Then the law of $\mu_{N}(T)$ is also \wp_{N}.
- Consider $\left(\mu_{N}(0), \mu_{N}(T)\right)$.
- Suppose that \wp_{N} satisfies the LDP with rate function V. Then, under some conditions, the joint law $\left(\mu_{N}(0), \mu_{N}(T)\right)$ satisfies the LDP with rate function

$$
(\nu, \xi) \mapsto V(\nu)+S_{T}(\xi \mid \nu)
$$

A recursion for the rate function

- Suppose that \wp_{N} satisfies the LDP with rate function V.
- We have that $\left(\mu_{N}(0), \mu_{N}(T)\right)$ satisfies the LDP with rate function

$$
(\nu, \xi) \mapsto V(\nu)+S_{T}(\xi \mid \nu)
$$

- On one hand, by the contraction principle, $\left\{\mu_{N}(T)\right\}$ satisfies the LDP with rate function

$$
\xi \mapsto \inf _{\nu \in \mathcal{M}_{1}(\mathcal{Z})}\left[V(\nu)+S_{T}(\xi \mid \nu)\right]
$$

- On the other hand, since the law of $\mu_{N}(T)$ is \wp_{N}, we have

$$
V(\xi)=\inf _{\nu \in \mathcal{M}_{1}(\mathcal{Z})}\left[V(\nu)+S_{T}(\xi \mid \nu)\right] \text { for all } T>0
$$

- Is there a unique V that satisfies this?

Large deviations of \wp_{N}

Theorem
The family $\left\{\wp_{N}\right\}$ satisfies the LDP on $\mathcal{M}_{1}(\mathcal{Z})$ with rate function

$$
V(\xi)=\inf _{T>0} S_{T}\left(\xi \mid \xi^{*}\right)
$$

Further, there exists a trajectory $\hat{\mu}$ such that $\hat{\mu}(t) \rightarrow \xi^{*}$ as $t \rightarrow-\infty, \hat{\mu}(0)=\xi$, and

$$
V(\xi)=S_{(-\infty, 0]}\left(\hat{\mu} \mid \xi^{*}\right)
$$

Large deviations of \wp_{N} - proof sketch

- Show that $V\left(\xi^{*}\right)=0$.
- Then,

$$
V(\xi) \leq V\left(\xi^{*}\right)+S_{T}\left(\xi \mid \xi^{*}\right) \text { for all } T>0
$$

- So,

$$
V(\xi) \leq \inf _{T>0} S_{T}\left(\xi \mid \xi^{*}\right)
$$

Large deviations of \wp_{N} - proof sketch

- For $T>0$, show that the infimum in

$$
\inf _{\nu \in \mathcal{M}_{1}(\mathcal{Z})}\left[V(\nu)+S_{T}(\xi \mid \nu)\right]
$$

is attained.

- For each ν, ξ and $T>0$, there is an optimal path $\hat{\mu}$ from ν to ξ, i.e., $S_{T}(\xi \mid \nu)=S_{[0, T]}(\hat{\mu} \mid \nu)$.
- So,

$$
V(\xi)=V(\hat{\mu}(-m T))+S_{m T}(\xi \mid \hat{\mu}(-m T)) .
$$

- Argue that $\hat{\mu}(-m T) \rightarrow \xi^{*}$ as $m \rightarrow \infty$.
- By the lower semicontinuity of V, and $V\left(\xi^{*}\right)=0$, we have

$$
V(\xi) \geq S_{(-\infty, 0]}\left(\hat{\mu} \mid \xi^{*}\right)
$$

The general case - multiple equilibria

- The Freidlin-Wentzell quasipotential V on $\mathcal{M}_{1}(\mathcal{Z})$.
- $P\left(\mu_{N}(\infty) \sim \xi\right) \sim \exp \{-N V(\xi)\}$.

The general case - some notation

- Assumptions on the McKean-Vlasov equation: There exists a finite number of compact sets $K_{1}, K_{2}, \ldots, K_{/}$such that
- Every equilibrium of the McKean-Vlasov equation lies completely in one of the compact sets K_{i}.
- No cost of movement within K_{i}. Positive cost to go out of (or come into) K_{i}.

- K_{5}
- $\tilde{V}\left(K_{i}, K_{j}\right)=\inf \left\{S_{[0, T]}\left(\varphi \mid \varphi_{0}\right): \varphi_{0} \in K_{i}, \varphi_{T} \in K_{j}, \varphi_{t} \notin\right.$ $\left.\cup_{i^{\prime} \neq i, j} K_{i^{\prime}}, T>0\right\}$ (communication cost from K_{i} to K_{j}).

Approximation of μ_{N} using a discrete chain

- K_{5}

Approximation of μ_{N} using a discrete chain

- K_{5}
- τ_{n} : hitting time of μ_{N} in a given neighbourhood of K_{i} 's.
- Hitting time chain: $Z_{n}^{N}=\mu_{N}\left(\tau_{n}\right), n \geq 1$.
- To quantify the transitions between K_{i} 's, we need large deviation estimates of μ_{N} uniformly with respect to the initial condition.

Uniform large deviations

- μ_{N}^{ν} : process starting from ν. Indexed by two parameters.

Definition

$\left\{\mu_{N}^{\nu}\right\}$ is said to satisfy the uniform LDP over a class of subsets $\mathcal{A} \subset \mathcal{M}_{1}(\mathcal{Z})$ if
\checkmark for each $K \subset \mathcal{M}_{1}(\mathcal{Z})$ compact and $s>0, \mathcal{K}=\bigcup_{\nu \in K} \Phi_{\nu}(s)$ is a compact subset of $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$;

- for any $\gamma>0, \delta>0, s>0$ and $A \in \mathcal{A}$, there exists $N_{0} \geq 1$ such that

$$
P_{\nu}\left(\rho\left(\mu_{N}^{\nu}, \varphi\right)<\delta\right) \geq \exp \left\{-N\left(S_{[0, T]}(\varphi \mid \nu)+\gamma\right)\right\}
$$

for all $\nu \in A, \varphi \in \Phi_{\nu}(s)$ and $N \geq N_{0}$;

- for any $\gamma>0, \delta>0, s_{0}>0$ and $A \in \mathcal{A}$, there exists $N_{0} \geq 1$ such that

$$
P_{\nu}\left(\rho\left(\mu_{N}^{\nu}, \Phi_{\nu}(s)\right) \geq \delta\right) \leq \exp \{-N(s-\gamma)\}
$$

for all $\nu \in A, s \leq s_{0}$ and $N \geq N_{0}$.

- Theorem: $\left\{\mu_{N}^{\nu}\right\}$ satisfies the uniform LDP over $\mathcal{M}_{1}(\mathcal{Z})$.

One step transition probability of Z^{N}

Lemma

Given $\varepsilon>0$, there exists $\delta>0$ such that the one-step transition probability of the chain Z^{N} satisfies

$$
\begin{aligned}
\exp \left\{-N\left(\tilde{V}\left(K_{i}, K_{j}\right)+\varepsilon\right)\right\} \leq & P\left(B\left(K_{i}, \delta\right), B\left(K_{j}, \delta\right)\right) \\
& \leq \exp \left\{-N\left(\tilde{V}\left(K_{i}, K_{j}\right)-\varepsilon\right)\right\}
\end{aligned}
$$

for all large enough N.

- Upon exit from K_{i}, μ_{N} is most likely to visit K_{j} that attains $\min _{j^{\prime}} \tilde{V}\left(K_{i}, K_{j^{\prime}}\right)\left(=\tilde{V}\left(K_{i}\right)\right)$.

One step transition probability of Z^{N} - proof sketch

- Lower bound:
- By the definition of $\tilde{V}\left(K_{i}, K_{j}\right)$, given $\varepsilon>0$, there exists a trajectory φ from K_{i} to K_{j} such that

$$
S_{[0, T]}\left(\varphi \mid K_{i}\right) \leq \tilde{V}\left(K_{i}, K_{j}\right)+\varepsilon
$$

- Then, using the uniform LDP for $\left\{\mu_{N}\right\}$,

$$
\begin{aligned}
P\left(B\left(K_{i}, \delta\right), B\left(K_{j}, \delta\right)\right) & \geq P_{K_{i}}\left(\mu_{N} \in \operatorname{nbhd}(\varphi)\right) \\
& \geq \exp \left\{-N\left(\tilde{V}\left(K_{i}, K_{j}\right)+\varepsilon\right)\right\}
\end{aligned}
$$

- Upper bound:
- Let τ_{1} be the hitting time of $\cup K_{/}$.
- Given $M>0$, we can find $T_{1}>0$ such that $P_{K_{i}}\left(\tau_{1}>T_{1}\right) \leq \exp \{-N M\}$.
- Let $A=\left\{\varphi: \varphi_{0} \in K_{i}, \varphi_{T_{1}} \in K_{j}, S_{[0, T]}\left(\varphi \mid K_{i}\right) \leq \tilde{V}\left(K_{i}, K_{j}\right)-\varepsilon\right\}$.
- Then using the uniform LDP for $\left\{\mu_{N}\right\}$,

$$
\begin{aligned}
P\left(B\left(K_{i}, \delta\right), B\left(K_{j}, \delta\right)\right) & \leq P_{K_{i}}\left(\tau_{1} \geq T_{1}\right)+P_{K_{i}}\left(\operatorname{dist}\left(\mu_{N}, A\right) \geq \delta\right) \\
& \leq \exp \{-N M\}+\exp \left\{-N\left(\tilde{V}\left(K_{i}, K_{j}\right)-\varepsilon\right)\right\}
\end{aligned}
$$

The Markov chain tree theorem

- Consider an irreducible Markov chain on $L=\{1,2, \ldots, /\}$ with transition probaiblity matrix P.
- An i-graph $G(i)$ is a directed graph on L such that
- There is exactly one outgoing arrow from every $j \in L$.
- There are no closed cycles.
- For an i-graph g, let $\pi(g)=\prod_{(i, j) \in g} P(i, j)$.
- Let $W(i)=\sum_{g \in G(i)} \pi(g)$.
- Then,

$$
\frac{W(i)}{\sum_{j} W(j)}, j \in L
$$

is the stationary distribution of the Markov chain.

The invariant measure of Z^{N}

- Recall the one-step transition probabilities of Z^{N} :

$$
P\left(K_{i}, K_{j}\right) \sim \exp \left\{-N \tilde{V}\left(K_{i}, K_{j}\right)\right\} .
$$

- Let $W\left(K_{i}\right)=\min _{g \in G(i)} \sum_{(m, n) \in g} \tilde{V}\left(K_{m}, K_{n}\right)$.
- By the Markov chain tree theorem, the the invariant measure of Z^{N} satisfies

$$
\gamma_{N}\left(K_{i}\right) \sim \exp \left\{-N\left(W(i)-\min _{j} W(j)\right)\right\}
$$

- Reconstruct \wp_{N} from γ_{N} and show that

$$
\wp_{N}\left(K_{i}\right) \sim \exp \left\{-N\left(W(i)-\min _{j} W(j)\right)\right\} .
$$

Large deviations of the invariant measure

Theorem
In the case of multiple equilibria, $\left\{\wp_{N}\right\}$ satisfies the LDP with rate function

$$
V(\xi)=\min _{1 \leq i \leq 1}\left[W\left(K_{i}\right)+\tilde{V}\left(K_{i}, \xi\right)\right]-\min _{1 \leq i \leq 1} W\left(K_{i}\right)
$$

Some applications of the LDP

- Exit times:
- The mean exit time from K_{i} is of the order $\exp \left\{N \tilde{V}\left(K_{i}\right)\right\}$, where $\tilde{V}\left(K_{i}\right)=\min _{j} \tilde{V}\left(K_{i}, K_{j}\right)$.
- Mixing time of μ_{N} :
- There is a constant $\Lambda>0$ such that μ_{N} mixes well when the time is of the order $\exp \{N \Lambda\}$.
- Proof via the exploration of equilibria. Mean passage times are of the order $\exp \{N \tilde{V}\}$, and has probability at least $\exp \{-N \varepsilon\}$.

Summary of Section 2

- A primer on large deviations.
- The process-level large deviations of the empirical measure process $\left\{\mu_{N}\right\}$.
- Get the LDP for a non-interacting system using Sanov's theorem.
- Use Varadhan's lemma to transfer it to $\left\{\mu_{N}\right\}$.
- Large deviations of the family of invariant measures $\left\{\wp_{N}\right\}$.
- The unique attractor case: Identify the rate function from a recursion.
- The multiple attractor case: Identify the values on the attractors.

Section 3

Variations - Two time-scales

Mean-Field Interacting Particle Systems: Limit Laws and Large Deviations

Section 3: Variations and Phenomena

SIGMETRICS/PERFORMANCE 2022

Outline of Section 3

- Variations:
- A two time scale mean-field model.
- Process-level large deviations of the empirical measure process.
- Phenomena:
- A countable state mean-field model.
- Large deviations of the family of invariant measures.
- Summary and some open questions.

A two time scale mean-field model

- N particles and an environment.
- At time t,
- The state of the nth particle is $X_{n}^{N}(t) \in \mathcal{Z}$;
- The state of the environment is $Y_{N}(t) \in \mathcal{Y}$.
- Certain allowed transitions.
- Particles: a directed graph $\left(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}}\right)$;
- Environment: a directed graph $(\mathcal{Y}, \mathcal{E} Y)$.
- Empirical measure of the system of particles at time t :

$$
\mu_{N}(t):=\frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in \mathcal{M}_{1}(\mathcal{Z})
$$

- We are given functions $\lambda_{i, j}(\cdot, y),(i, j) \in \mathcal{E}_{\mathcal{Z}}, y \in \mathcal{Y}$ and $\gamma_{y, y^{\prime}}(\cdot),\left(y, y^{\prime}\right) \in \mathcal{E}_{\mathcal{Y}}$ on $\mathcal{M}_{1}(\mathcal{Z})$.
- Markovian evolution at time t :
- Particles: $i \rightarrow j$ at rate $\lambda_{i, j}\left(\mu_{N}(t), Y_{N}(t)\right)$;
- Environment: $y \rightarrow y^{\prime}$ at rate $N \gamma_{y, y^{\prime}}\left(\mu_{N}(t)\right)$.

An example: Constant rate retrial systems

- N queues (particles), and a single server (environment).
- The server becomes busy at rate $N\left(\lambda+\alpha\left(1-\mu_{N}(t)(0)\right)\right)$.

A two time scale mean-field model

- $\left(\mu_{N}, Y_{N}\right)$ is a Markov process with the transition rates

$$
(\xi, y) \rightarrow \begin{cases}\left(\xi, y^{\prime}\right) & \text { at rate } N \gamma_{y, y^{\prime}}(\xi) \\ \left(\xi+\frac{\delta_{j}}{N}-\frac{\delta_{i}}{N}\right) & \text { at rate } N \xi(i) \lambda_{i, j}(\xi, y)\end{cases}
$$

- A "fully coupled" two time scale process.
- Assumptions:
- The graphs $\left(\mathcal{Z}, \mathcal{E}_{\mathcal{Z}}\right)$ and $\left(\mathcal{Y}, \mathcal{E}_{\mathcal{Y}}\right)$ are irreducible.
- The functions $\lambda_{i, j}(\cdot, y)$ are Lipschitz continuous and $\inf _{\xi} \lambda_{i, j}(\xi, y)>0$ for all $(i, j) \in \mathcal{E}_{\mathcal{Z}}$ and $y \in \mathcal{Y}$.
- The functions $\gamma_{y, y^{\prime}}(\cdot)$ are continuous and $\inf _{\xi} \gamma_{y, y^{\prime}}(\xi)>0$ for all $\left(y, y^{\prime}\right) \in \mathcal{E} Y$.

The occupation measure process

- Fix a time duration $T>0$.
- View μ_{N} as a random element of $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$.
- Consider the occupation measure of the fast environment:

$$
\theta_{N}(t)(\cdot):=\int_{0}^{t} 1_{\left\{Y_{N}(s) \in \cdot\right\}} d s, 0 \leq t \leq T
$$

- θ_{N} is a random element of $D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$, the set of θ such that $\theta_{t}-\theta_{s} \in M(\mathcal{Y})$ and $\theta_{t}(\mathcal{Y})=t$ for $0 \leq s \leq t \leq T$.
- We can write θ as $\theta(d y d t)=m_{t}(d y) d t$ where $m_{t} \in M_{1}(\mathcal{Y})$.
- We consider the process $\left(\mu_{N}, \theta_{N}\right)$ with sample paths in $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$.

The averaging principle

- Suppose we freeze $\mu_{N}(t)$ to be ξ. Then for large N,
- The Y_{N} process would quickly equilibrate to π_{ξ}, the unique invariant probability measure of

$$
L_{\xi} g(y):=\sum_{y^{\prime}:\left(y, y^{\prime}\right) \in \mathcal{E}_{y}}\left(g\left(y^{\prime}\right)-g(y)\right) \gamma_{y, y^{\prime}}(\xi), y \in \mathcal{Y} .
$$

- For a particle, an (i, j) transition occurs at rate

$$
\sum_{y \in \mathcal{Y}} \lambda_{i, j}(\xi, y) \pi_{\xi}(y)=: \bar{\lambda}_{i, j}\left(\xi, \pi_{\xi}\right) .
$$

Theorem (Bordenave et al. 2009)
Suppose that $\mu_{N}(0) \rightarrow \nu$ in $\mathcal{M}_{1}(\mathcal{Z})$. Then μ_{N} converges in probability, in $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$, to the solution to the ODE

$$
\dot{\mu}_{t}=\bar{\Lambda}_{\mu_{t}, \pi_{\mu_{t}}}^{T} \mu_{t}, 0 \leq t \leq T, \mu_{0}=\nu .
$$

where $\bar{\Lambda}_{\mu_{t}, \pi_{\mu_{t}}}(i, j)=\bar{\lambda}_{i, j}\left(\mu_{t}, \pi_{\mu_{t}}\right)$.

- μ_{N} is a small random perturbation of the above ODE. We study the large deviations of $\left(\mu_{N}, \theta_{N}\right)$.

Main result

Theorem
Suppose that $\left\{\mu_{N}(0)\right\}_{N \geq 1}$ satisfies the LDP on $\mathcal{M}_{1}(\mathcal{Z})$ with rate function I_{0}. Then the sequence $\left\{\left(\mu_{N}(t), \theta_{N}(t)\right), 0 \leq t \leq T\right\}_{N \geq 1}$ satisfies the $L D P$ on $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$ with rate function

$$
I(\mu, \theta):=I_{0}(\mu(0))+J(\mu, \theta)
$$

The rate function J

$$
\begin{aligned}
J(\mu, \theta):= & \int_{[0, T]}\left\{_{\sup _{\alpha \in \mathbb{R}^{|\mathcal{Z}|}}\left(\left\langle\alpha,\left(\dot{\mu}_{t}-\bar{\Lambda}_{\mu_{t}, m_{t}}^{T} \mu_{t}\right)\right\rangle\right.}\right. \\
& \left.-\sum_{(i, j) \in \mathcal{E}_{\mathcal{Z}}} \tau(\alpha(j)-\alpha(i)) \bar{\lambda}_{i, j}\left(\mu_{t}, m_{t}\right) \mu_{t}(i)\right) \\
& +\sup _{g \in \mathbb{R}^{|\mathcal{Y}|}} \sum_{y \in \mathcal{Y}}\left(-L_{\mu_{t}} g(y)\right. \\
& \left.\left.-\sum_{y^{\prime}:\left(y, y^{\prime}\right) \in \mathcal{E}_{y}} \tau\left(g\left(y^{\prime}\right)-g(y)\right) \gamma_{y, y^{\prime}}\left(\mu_{t}\right)\right) m_{t}(y)\right\} d t
\end{aligned}
$$

whenever the mapping $[0, T] \ni t \mapsto \mu_{t} \in \mathcal{M}_{1}(\mathcal{Z})$ is absolutely continuous, where $\theta(d t d y)=m_{t}(d y) d t$, and $J(\mu, \theta)=+\infty$ otherwise.

- $\tau(u)=e^{u}-u-1, u \in \mathbb{R}$.

Some remarks about the rate function

- $J(\mu, \theta) \geq 0$ with equality iff (μ, θ) satisfies the mean-field limit.
- Two parts. The mean-field part (slow component) and occupation measure part (fast component).
- For the slow component, the average of the fast variable appears.
- For the fast component, the slow variable is frozen.
- For occupation measure of Markov processes, the canonical form of the rate function is $\int_{[0, T]} \sup _{h>0} \sum_{\mathcal{Y}}-\frac{L_{\mu_{t}} h(y)}{h(y)} m_{t}(y) d t$ (Donsker and Varadhan, 1973). This can be obtained by taking $h=e^{g}$.

Large deviations of μ_{N}

Corollary

$\left\{\mu_{N}\right\}$ satisfies the LDP on $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right)$ with rate function

$$
\mu \mapsto I_{0}\left(\mu_{0}\right)+\inf _{\theta} J(\mu, \theta) .
$$

- Follows from contraction principle since the mapping $(\mu, \theta) \mapsto \mu$ is continuous.
- Can quantify rare transitions.

Outline of the proof

- We use the method of stochastic exponentials (Pulahskii 2016, 1994).
- Show exponential tightness. This gives a subsequential LDP.
- Get a condition for any subsequential rate function (in terms of an exponential martingale).
- Identify the subsequential rate function on "nice" elements of the space.
- Extend to the whole space using suitable approximations.
- Unique identification any subsequential rate function (regardless of the subsequence) implies the LDP.

An exponential martingale

- If N_{t} is the unit rate Poisson point process, then $N_{t}-t$ is a martingale.
- Recall that

$$
\tau(\alpha)=\log E\left(\exp \left\{\alpha\left(N_{1}-1\right)\right\}\right)
$$

- One can verify that

$$
\exp \left\{\alpha\left(N_{t}-t\right)-\tau(\alpha) t\right\}
$$

is a martingale for all α.

- We get a necessary condition for the subsequential rate function in terms of such exponential martingales.

Exponential tightness

Theorem

The sequence $\left\{\left(\mu_{N}(t), \theta_{N}(t)\right), t \in[0, T]\right\}_{N \geq 1}$ is exponentially tight in $D\left([0, T], M_{1}(\mathcal{Z})\right) \times D_{\uparrow}([0, T], M(\mathcal{Y}))$, i.e., given any $M>0$, there exists a compact set K_{M} such that

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \log P\left(\left\{\left(\mu_{N}(t), \theta_{N}(t)\right), 0 \leq t \leq T\right\} \notin K_{M}\right) \leq-M .
$$

For $\beta>0$ and $\alpha \in \mathbb{R}^{|\mathcal{Z}|}$, with $X_{N, t}=\left\langle\alpha, \mu_{N}(t)\right\rangle$,

$$
\begin{aligned}
\exp \{ & N\left(\beta X_{N, t}-\beta X_{N, 0}-\beta \int_{0}^{t} \Phi_{Y_{N, s}} f\left(\mu_{N, s}\right) d s\right. \\
& \left.\left.-\int_{0}^{t} \sum_{(i, j)} \tau(\beta(\alpha(j)-\alpha(i))) \lambda_{i, j}\left(\mu_{N, s}, Y_{N, s}\right) \mu_{N, s}(i) d s\right)\right\}, t \geq 0
\end{aligned}
$$

is an exponential martingale. Use Doob's inequality and a condition for exponential tightness in $D([0, T], \mathbb{R})$ (Puhalskii, 1994).

An equation for the subsequential rate function

- Let $\left\{\left(\mu_{N_{k}}, \theta_{N_{k}}\right)\right\}_{k \geq 1}$ be a subsequence that satisfies the LDP with rate function \tilde{I}.
- Let $\alpha:[0, T] \times \mathcal{M}_{1}(\mathcal{Z}) \rightarrow \mathbb{R}^{|\mathcal{Z}|}$ and $g:[0, T] \times \mathcal{M}_{1}(\mathcal{Z}) \times \mathcal{Y} \rightarrow \mathbb{R}$ be bounded measurable, and continuous on $\mathcal{M}_{1}(\mathcal{Z})$.
- Define $U_{t}^{\alpha, g}(\mu, \theta)$ by

$$
\begin{aligned}
& \int_{[0, t]}\left\{\left\langle\alpha_{s}\left(\mu_{s}\right), \dot{\mu}_{s}-\bar{\Lambda}_{\mu_{s}, m_{s}}^{T} \mu_{s}\right\rangle\right. \\
& \quad-\sum_{(i, j)} \tau\left(\alpha_{s}\left(\mu_{s}\right)(j)-\alpha_{s}\left(\mu_{s}\right)(i)\right) \bar{\lambda}_{i, j}\left(\mu_{s}, m_{s}\right) \mu_{s}(i) \\
& \quad+\sum_{y}\left(-L_{\mu_{s}} g_{s}\left(\mu_{s}, \cdot\right)(y)\right. \\
& \left.\left.\quad-\sum_{y:\left(y, y^{\prime}\right) \in \mathcal{E}_{\mathcal{Y}}} \tau\left(g_{s}\left(\mu_{s}, y^{\prime}\right)-g_{s}\left(\mu_{s}, y\right)\right) \gamma_{y, y^{\prime}}\left(\mu_{s}\right)\right) m_{s}(y)\right\} d s
\end{aligned}
$$

An equation for the subsequential rate function

- We can show that, for each α and g,

$$
\begin{equation*}
\sup _{(\mu, \theta) \in \Gamma}\left(U_{T}^{\alpha, g}(\mu, \theta)-\tilde{I}(\mu, \theta)\right)=0 \tag{1}
\end{equation*}
$$

where Γ is the set of (μ, θ) such that $t \mapsto \mu_{t}$ absolutely continuous.

- On one hand, for a smaller class of α and g,

$$
E \exp \left\{N U_{T}^{\alpha, g}\left(\mu_{N}, \theta_{N}\right)+V_{T}^{g}\left(\mu_{N}, Y_{N}\right)\right\}=1,
$$

where V_{T}^{g} is $O(1)$ a.s.

- On the other hand, Varadhan's lemma implies that

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{N_{k}} \log E \exp \left\{N_{k} U_{T}^{\alpha, g}\left(\mu_{N_{k}}, \theta_{N_{k}}\right)+V_{T}^{g}\left(\mu_{N_{k}}, Y_{N_{k}}\right)\right\} \\
\quad=\sup _{(\mu, \theta)}\left(U_{T}^{\alpha, g}(\mu, \theta)-\tilde{I}(\mu, \theta)\right)
\end{gathered}
$$

This can be extended to (1).

- Moreover, the supremum in (1) is attained.

A candidate rate function

- Recall that $\sup _{(\mu, \theta) \in \Gamma}\left(U_{T}^{\alpha, g}(\mu, \theta)-\tilde{l}(\mu, \theta)\right)=0$.
- A natural candidate for the rate function

$$
I^{*}(\mu, \theta)=\sup _{\alpha, g} U_{T}^{\alpha, g}(\mu, \theta)
$$

- It can be shown that $I^{*}=J$.
- Note that $\tilde{I} \geq I^{*}$ on Γ. Outside Γ, I^{*} can be shown to be $+\infty$.
- Goal: show that $\tilde{I} \leq I^{*}$ whenever $I^{*}<+\infty$. Once this is established, the LDP follows.

Identification of \tilde{I} on "nice" elements

- Suppose $(\hat{\mu}, \hat{\theta})$ is such that $I^{*}(\hat{\mu}, \hat{\theta})<+\infty$, and
$-\inf _{t \in[0, T]} \min _{i \in \mathcal{Z}} \hat{\mu}_{t}(i)>0$,
- the mapping $[0, T] \ni t \mapsto \hat{\mu}_{t} \in \mathcal{M}_{1}(\mathcal{Z})$ is Lipschitz continuous,
- $\inf _{t \in[0, T]} \min _{y \in \mathcal{Y}} \hat{m}_{t}(y)>0$ where $\hat{\theta}(d y d t)=\hat{m}_{t}(d y) d t$.
- Then, there exists $(\hat{\alpha}, \hat{g})$ that attains $\sup _{\alpha, g} U_{T}^{\alpha, g}(\hat{\mu}, \hat{\theta})$.
- To show that $\hat{\alpha}$ and \hat{g} are continuous on $\mathcal{M}_{1}(\mathcal{Z})$, we use the Berge's maximum theorem.
- With this $(\hat{\alpha}, \hat{g})$, get $(\tilde{\mu}, \tilde{\theta})$ that attains the supremum in $\sup _{(\mu, \theta) \in \Gamma}\left(U_{T}^{\hat{\alpha}, \hat{g}}(\mu, \theta)-\tilde{l}(\mu, \theta)\right)=0$.
- Hence, $I^{*}(\tilde{\mu}, \tilde{\theta}) \geq U_{T}^{\hat{\alpha}, \hat{g}}(\tilde{\mu}, \tilde{\theta})=\tilde{I}(\tilde{\mu}, \tilde{\theta})$.
- Since $I^{*} \leq \tilde{I}$, we get $I^{*}(\tilde{\mu}, \tilde{\theta})=\tilde{I}(\tilde{\mu}, \tilde{\theta})$.
- Show that $(\tilde{\mu}, \tilde{\theta})=(\hat{\mu}, \hat{\theta})$.
- It follows that $\tilde{I}(\hat{\mu}, \hat{\theta})=I^{*}(\hat{\mu}, \hat{\theta})$.

Approximation procedure

- For general elements $(\hat{\mu}, \hat{\theta}),(\hat{\alpha}, \hat{g})$ may not exist.
- Produce $\left(\hat{\mu}_{k}, \hat{\theta}_{k}\right)$ that are "nice", and satisfy
- $\left(\hat{\mu}_{k}, \hat{\theta}_{k}\right) \rightarrow(\hat{\mu}, \hat{\theta})$ as $k \rightarrow \infty$,
- $I=I^{*}$ on $\left(\hat{\mu}_{k}, \hat{\theta}_{k}\right)$ for all k,
- $I^{*}\left(\hat{\mu}_{k}, \hat{\theta}_{k}\right) \rightarrow I^{*}(\hat{\mu}, \hat{\theta})$ as $k \rightarrow \infty$.
- It then follows that $\tilde{I}=I^{*}$ on $(\hat{\mu}, \hat{\theta})$.
- Relaxation of $\inf _{t \in[0, T]} \min _{i \in \mathcal{Z}} \hat{\mu}_{t}(i)>0$:

- Other conditions are relaxed using suitable approximations. We finally get $\tilde{I}=I^{*}$ for all elements.

Summary of the proof

- For "nice" elements of $D\left([0, T], \mathcal{M}_{1}(\mathcal{Z})\right) \times D_{\uparrow}([0, T], \mathcal{M}(\mathcal{Y}))$, we show that $\tilde{I}=I^{*}$ (convex analysis, variational problems).
- Approximate general elements using "nice" elements and pass to the limit (parametric continuity of optimisation problems, dominated convergence).

Section 4

Variations - Phenomena in the infinite state space case

The running cost of following a trajectory $\phi(\cdot)$

- At each time t, if the current state is $\phi(t)$, the natural tendency is to go along the tangent $\Lambda(\phi(t))^{T} \phi(t)$.
- To follow $\phi(t)$ however, the system needs to work against the McKean-Vlasov gradient and move along the tangent $\dot{\phi}(t)$.
- $L(\phi(t), \dot{\phi}(t))$.

Guessing the running cost

- Write $\dot{\phi}(t)=G(t)^{T} \phi(t)$.
- By decoupling, each node's state is iid $\phi(t)$.
- Natural tendency for the $N \phi(t)(i)$ nodes in state i is to have $i \rightsquigarrow j$ at current (instantaneous) rate $\lambda_{i, j}(\phi(t))$.
- But to move along $\phi(t)$ they must have an instantaneous rate of $G_{i, j}(t)$.
- The $N \phi(t)(i)$ Bernoulli $\left(p=\lambda_{i, j}(t) d t\right)$ random variables must have a large deviation and must have an empirical measure close to ($\left.q=G_{i, j}(t) d t\right)$. By Sanov's theorem, the negative exponent is:

$$
N \phi(t)(i) D(q \| p) \cong N \phi(t)(i)\left(q \log \frac{q}{p}-q+p\right)
$$

- Sum over i and j and integrate over $[0, T]$ to get the action functional:

$$
\int_{0}^{T} L(\phi(t), \dot{\phi}(t)) d t
$$

The case of a globally asymptotically stable equilibrium ξ^{*}

Theorem
$V(\xi)$ is given by

$$
V(\xi)=\inf \left\{\int_{0}^{T} L(\phi(t), \dot{\phi}(t)) d t \mid \phi(0)=\xi^{*}, \phi(T)=\xi, T \in(0, \infty)\right\} .
$$

- Any deviation that puts the system at ξ must have started its effort from ξ^{*}.
- $V\left(\xi^{*}\right)=0$.

The path to ξ

Can specify not only exponent $V(\xi)$ of the probability, but also the path.
Any deviation that puts the system near q must have started from ξ^{*}, and must have taken the least cost path.

When there are multiple stable limit sets

The case of two stable equilibria is easy to describe.

- $V_{12}=$ cost of moving from ξ_{1}^{*} to ξ_{2}^{*}.
- $V_{21}=$ cost of the reverse move.
- If $V_{12}>V_{21}$, then $v_{1}=0$ and $v_{2}=V_{12}-V_{21}$.

When there are multiple stable limit sets

Theorem

$V(\xi)$ is given by

$$
V(\xi)=\inf _{i}\left\{v_{i}+\int_{0}^{T} L(\phi(t), \dot{\phi}(t)) d t \mid \phi(0)=\xi_{i}^{*}, \phi(T)=\xi, T \in(0, \infty)\right\} .
$$

- Start from the global minimum ξ_{1}^{*} and move to the attractor in the basin in which ξ lies along the least cost path.
- Then move to ξ along the least cost path.

Infinite state space

- Now $r=\infty$
- Forward rate λ_{f}, backward rate λ_{b}. Let ξ^{*} be the invariant measure.
$-X_{n}^{(N)}(\infty) \sim \xi^{*}$
$\xi^{*}(i)=(1-\rho) \rho^{i}, \quad i \geq 0$, where $\rho=\frac{\lambda_{f}}{\lambda_{f}+\lambda_{b}}$.

The "interacting particle system", LDP, and the rate function

- For explicit calculations, assume that the queues are noninteracting (i.e., each evolves independently).
- We are interested in invariant measure for the empirical measure.
- The invariant measure is just the law of $\mu_{N}(\infty)=\frac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{(N)}(\infty)}$
- (Sanov) The $\mu_{N}(\infty)$ sequence satisfies the LDP with rate function given by relative entropy $I\left(\cdot \| \xi^{*}\right)$.

What are "reachable" points at stationarity?

- Let $\iota(i)=i$.
- $I\left(\xi \| \xi^{*}\right)$ is finite if and only if $\langle\xi, \iota\rangle<\infty$.
- Define $\vartheta(i)=i \log i$. There are points ξ for which $\langle\xi, \iota\rangle<\infty$, but $\langle\xi, \vartheta\rangle=\infty$. Mass is sufficiently spread out, since $I\left(\xi, \xi^{*}\right)$ is finite, they are still reachable at stationarity.

Quasipotential

- Define the quasipotential as before.

$$
\begin{aligned}
V(\xi)= & \inf \left\{\int_{0}^{T} L(\phi(t), \dot{\phi}(t)) d t \mid \phi(0)=\xi^{*}, \phi(T)=\xi, T \in(0, \infty)\right\} \\
\geq & \inf _{T} \sup _{f \in C_{0}^{1}([0, T] \times \mathcal{Z}}\left\{\left\langle\phi_{T}, f_{T}\right\rangle-\left\langle\phi_{0}, f_{0}\right\rangle-\int_{0}^{T}\left\langle\phi_{u}, \partial_{u} f_{u}\right\rangle d u\right. \\
& \left.-\int_{0}^{T}\left\langle\phi_{u}, \Lambda_{\phi_{u}} f_{u}\right\rangle d u-\int_{0}^{T} \sum_{i, j} \tau\left(f_{u}(j)-f_{u}(i)\right) \lambda_{i, j}\left(\phi_{u}\right) \phi_{u}(i) d u\right\}
\end{aligned}
$$

- Last two terms simplify to $\int_{0}^{T} \sum_{i, j} \exp \left\{f_{u}(j)-f_{u}(i)\right\} \lambda_{i, j}\left(\phi_{u}\right) \phi_{u}(i) d u$
- Strategy
- Choose $f_{n}=\vartheta(\operatorname{Hat}(0, n, 2 n))$. This is like $\vartheta(n)$ up to n.

Then $f_{n}(j)-f_{n}(i) \leq 1+\log (i+1)$ for the edges in the graph.

- Last two terms $\propto\left\langle\phi_{u}, \iota\right\rangle$ which integrates to a finite value.
- Then let $f_{n} \rightarrow \vartheta$ as $n \rightarrow \infty$.
- Then $\langle\xi, \vartheta\rangle=\infty \Rightarrow V(\xi)=\infty$.

Infinite state space

Theorem

The rate function for the invariant measure is the relative entropy $I\left(\cdot \| \zeta^{*}\right)$, and this is not equal to the quasipotential V.

- Take a ξ whose mean is finite but the slightly larger $i \log i$ moment is infinite.
- V comes from a finite horizon perspective. There are barriers that are too difficult to cross in any finite time horizon, but in the stationary regime these can be crossed leading to a finite rate function at these points.
- A partial answer

Theorem
If $\lambda_{i, i+1}(\cdot)=\Theta(1 /(i+1))$, then the rate function for the invariant measure is indeed governed by the quasipotential.

The take-away picture

