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Let Z denote the set of nonnegative integers.

N particles. The state of the nth particle at time t is
XN(t) e 2.

There are certain allowed transitions: (Z,&).

The empirical measure of system of particles at time t:

N
1
pl(t) = N Z5xnlv(t) € My(2).

n=1

For each (z,2') € £, we are given a function
)\2721 : Ml(Z) — R+.
At time t, a particle at state z makes a z — Z’ transition at

rate A, (u"(t)).

uN is a Markov process with state space M;(Z). Under
suitable assumptions, it possess an invariant probability
measure pN.

Goal: study the large deviations of the family {pV N > 1}.
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{XN N > 1} be a sequence of S-valued random variables.

» Roughly, P(XN € A) ~ exp{—Ninfyca I(x)}, where
I:S—][0,00].

Definition (Varadhan, 1966)
{XN N > 1} is said to satisfy the LDP on S with rate function
I:S —[0,00] if

e foreach M >0, {x € S:/(x) < M} is a compact subset of S;

® for each open set G C S

1
lim inf - log P(XN € G) > — inf I(x);

N—o00 x€G

® for each closed set F C S

Iimsup%log P(XN e F) < — inf I(x).

N—oo xeF
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» Recall that we want to study the large deviations of {©"}.

Mean-field limit
(McKean-Vlasov equation)

Another path p.
Prob ~ e~ NSo.n(kl),

> Assume that £* is the unique global attractor of the
McKean-Vlasov equation.

» Let u"NV(0) — v in My(Z). Then the process {uN} satisfies
the LDP on D([0, T], M1(Z)) with rate function Syo 11(:|v).

» Define the Freidlin-Wentzell quasipotential

V(&) = inf{Sjo,11(#l€7), p0 = €07 =&, T > 0}, £ € Mi(2).

» V is a candidate rate function for the family {p"}.
» This is indeed the case in many models, e.g., finite-state
mean-field models, small-noise diffusions.
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» Consider N independent, identical, positive recurrent M/M/1
queues. Let £* be the stationary distribution of one queue.

l.)\f l‘)\( I iA:f Ajﬁ
Ab Ab Ab b Ab

» There is a unique " for each N. By Sanov's theorem, the
family {p"N} satisfies the LDP with rate function /(-[|£*).

» Recall the Freidlin-Wentzell quasipotential
V(E) = mf{s[O,T](SOM*)vSOO = 5*7907— =& T > 0}7 § € Ml(Z)

» We show that V # I(-||€*). Let ¥(z) = zlog z.
> If £ € Mi(Z2) is such that > z&(z) < oo and
> 9¥(2)€(z) = oo, then V(&) = oo but /(£]|€*) < .

» Thus, the quasipotential V does not govern the LDP for the
family {p"}.
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> We make the following assumptions on the mean-field model.

>

>

>

Transition graph:
Q-0 C
There exist positive constants A and ) such that
A A

— < <
741" )‘Z,Z+1(£) =

for each £ € My(2).

The functions (z + 1)A, 241(+), z € Z, and A, o(),

z € Z\ {0}, are uniformly Lipschitz continuous on M;(Z).
There is a unique globally asymptotically stable equilibrium for
the McKean-Vlasov equation (£*).

» Under the above assumptions, we first show that, for each
N > 1, there is a unique invariant measure " for p/V.
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Main result

Theorem
Under the above assumptions, the family {p} satisfies the LDP
on My(Z) with rate function V.

>

Main difficulty: the space M;(Z2) is infinite dimensional. It is
not locally compact.

Since V has compact level sets, it cannot be continuous.
We transfer the process-level uniform LDP for xV to the
stationary regime (Sowers (1992)).

Main ingredients in the proof:

» A continuity property of V: If £, — & in My(Z) and
(€n, V) — (€,9) as n — oo, then V/(&,) — V(&) as n — oo.

> The process-level uniform LDP for {uN} over compact subsets
of My(Z).

» The strong Markov property of V.

> Exponential tightness of {p"}:
eV ({€: (€,9) < M}C) < exp{—NM'} for all N.
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