A sufficient condition for the quasipotential to be the rate function of the invariant measure of countable-state mean-field interacting particle systems

Sarath Yasodharan

ECE Department, Indian Institute of Science

Bangalore Probability Seminar 25 April 2022

- \blacktriangleright Let ${\mathcal Z}$ denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N} \sum_{n=1}^{N} \delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

For each $(z, z') \in \mathcal{E}$, we are given a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to \mathbb{R}_+$.

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

- For each $(z, z') \in \mathcal{E}$, we are given a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to \mathbb{R}_+$.
- At time t, a particle at state z makes a z → z' transition at rate λ_{z,z'}(μ^N(t)).

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

- For each $(z, z') \in \mathcal{E}$, we are given a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to \mathbb{R}_+$.
- At time t, a particle at state z makes a z → z' transition at rate λ_{z,z'}(μ^N(t)).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• μ^N is a Markov process with state space $M_1(\mathcal{Z})$.

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- There are certain allowed transitions: $(\mathcal{Z}, \mathcal{E})$.
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

- For each $(z, z') \in \mathcal{E}$, we are given a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to \mathbb{R}_+$.
- At time t, a particle at state z makes a z → z' transition at rate λ_{z,z'}(μ^N(t)).
- µ^N is a Markov process with state space M₁(Z). Under suitable assumptions, it possess an invariant probability measure ℘^N.

- Let \mathcal{Z} denote the set of nonnegative integers.
- ▶ *N* particles. The state of the *n*th particle at time *t* is $X_n^N(t) \in \mathbb{Z}$.
- ▶ There are certain allowed transitions: (*Z*,*E*).
- ▶ The empirical measure of system of particles at time *t*:

$$\mu^{N}(t) = rac{1}{N}\sum_{n=1}^{N}\delta_{X_{n}^{N}(t)} \in M_{1}(\mathcal{Z}).$$

- ▶ For each $(z, z') \in \mathcal{E}$, we are given a function $\lambda_{z,z'} : M_1(\mathcal{Z}) \to \mathbb{R}_+$.
- At time t, a particle at state z makes a z → z' transition at rate λ_{z,z'}(μ^N(t)).
- µ^N is a Markov process with state space M₁(Z). Under suitable assumptions, it possess an invariant probability measure ℘^N.
- ► Goal: study the large deviations of the family $\{\wp^N, N \ge 1\}$.

► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.

► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$, where $I : S \rightarrow [0, \infty]$.

- ▶ Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$, where $I : S \rightarrow [0, \infty]$.

Definition (Varadhan, 1966)

 $\{X^N,N\geq 1\}$ is said to satisfy the LDP on S with rate function $I:S\to [0,\infty]$ if

- ▶ Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$, where $I : S \rightarrow [0, \infty]$.

Definition (Varadhan, 1966)

 $\{X^N,N\geq 1\}$ is said to satisfy the LDP on S with rate function $I:S\rightarrow [0,\infty]$ if

• for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$, where $I : S \rightarrow [0, \infty]$.

Definition (Varadhan, 1966)

 $\{X^N,N\geq 1\}$ is said to satisfy the LDP on S with rate function $I:S\rightarrow [0,\infty]$ if

- for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;
- for each open set $G \subset S$

$$\liminf_{N\to\infty}\frac{1}{N}\log P(X^N\in G)\geq -\inf_{x\in G}I(x);$$

- ► Let S be a complete and separable metric space. Let {X^N, N ≥ 1} be a sequence of S-valued random variables.
- ▶ Roughly, $P(X^N \in A) \sim \exp\{-N \inf_{x \in A} I(x)\}$, where $I : S \rightarrow [0, \infty]$.

Definition (Varadhan, 1966)

 $\{X^N,N\geq 1\}$ is said to satisfy the LDP on S with rate function $I:S\rightarrow [0,\infty]$ if

- for each M > 0, $\{x \in S : I(x) \le M\}$ is a compact subset of S;
- for each open set $G \subset S$

$$\liminf_{N\to\infty}\frac{1}{N}\log P(X^N\in G)\geq -\inf_{x\in G}I(x);$$

• for each closed set $F \subset S$

$$\limsup_{N\to\infty}\frac{1}{N}\log P(X^N\in F)\leq -\inf_{x\in F}I(x).$$

• Recall that we want to study the large deviations of $\{\wp^N\}$.

• Recall that we want to study the large deviations of $\{\wp^N\}$.

- Assume that ξ* is the unique global attractor of the McKean-Vlasov equation.
- ▶ Let $\mu^{N}(0) \rightarrow \nu$ in $M_{1}(\mathcal{Z})$. Then the process $\{\mu^{N}\}$ satisfies the LDP on $D([0, T], M_{1}(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot | \nu)$.

• Recall that we want to study the large deviations of $\{\wp^N\}$.

- Assume that ξ* is the unique global attractor of the McKean-Vlasov equation.
- ▶ Let $\mu^{N}(0) \rightarrow \nu$ in $M_{1}(\mathcal{Z})$. Then the process $\{\mu^{N}\}$ satisfies the LDP on $D([0, T], M_{1}(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot | \nu)$.
- Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

• Recall that we want to study the large deviations of $\{\wp^N\}$.

- Assume that ξ* is the unique global attractor of the McKean-Vlasov equation.
- ▶ Let $\mu^{N}(0) \rightarrow \nu$ in $M_{1}(\mathcal{Z})$. Then the process $\{\mu^{N}\}$ satisfies the LDP on $D([0, T], M_{1}(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot | \nu)$.
- Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

• V is a candidate rate function for the family $\{\wp^N\}$.

• Recall that we want to study the large deviations of $\{\wp^N\}$.

- Assume that ξ* is the unique global attractor of the McKean-Vlasov equation.
- ▶ Let $\mu^{N}(0) \rightarrow \nu$ in $M_{1}(\mathcal{Z})$. Then the process $\{\mu^{N}\}$ satisfies the LDP on $D([0, T], M_{1}(\mathcal{Z}))$ with rate function $S_{[0, T]}(\cdot | \nu)$.
- Define the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

V is a candidate rate function for the family {℘^N}.
This is indeed the case in many models, e.g., finite-state mean-field models, small-noise diffusions.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

There is a unique ℘^N for each N. By Sanov's theorem, the family {℘^N} satisfies the LDP with rate function I(·||ξ*).

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

There is a unique ℘^N for each N. By Sanov's theorem, the family {℘^N} satisfies the LDP with rate function I(·||ξ*).
Recall the Freidlin-Wentzell guasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

There is a unique ℘^N for each N. By Sanov's theorem, the family {℘^N} satisfies the LDP with rate function I(·||ξ*).
Recall the Freidlin-Wentzell quasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

• We show that $V \neq I(\cdot || \xi^*)$.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

There is a unique ℘^N for each N. By Sanov's theorem, the family {℘^N} satisfies the LDP with rate function I(·||ξ*).
Recall the Freidlin-Wentzell guasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• We show that $V \neq I(\cdot || \xi^*)$. Let $\vartheta(z) = z \log z$.

• If
$$\xi \in M_1(\mathcal{Z})$$
 is such that $\sum z\xi(z) < \infty$ and
 $\sum \vartheta(z)\xi(z) = \infty$, then $V(\xi) = \infty$ but $I(\xi || \xi^*) < \infty$.

Consider N independent, identical, positive recurrent M/M/1 queues. Let ξ* be the stationary distribution of one queue.

There is a unique ℘^N for each N. By Sanov's theorem, the family {℘^N} satisfies the LDP with rate function I(·||ξ*).
Recall the Freidlin-Wentzell guasipotential

$$V(\xi) = \inf\{S_{[0,T]}(\varphi|\xi^*), \varphi_0 = \xi^*, \varphi_T = \xi, T > 0\}, \xi \in M_1(\mathcal{Z}).$$

- We show that $V \neq I(\cdot ||\xi^*)$. Let $\vartheta(z) = z \log z$.
 - ▶ If $\xi \in M_1(\mathcal{Z})$ is such that $\sum z\xi(z) < \infty$ and $\sum \vartheta(z)\xi(z) = \infty$, then $V(\xi) = \infty$ but $I(\xi || \xi^*) < \infty$.
- ► Thus, the quasipotential V does not govern the LDP for the family {℘^N}.

• We make the following assumptions on the mean-field model.

Transition graph:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We make the following assumptions on the mean-field model.
 - Transition graph:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for each $\xi \in M_1(\mathcal{Z})$.

- We make the following assumptions on the mean-field model.
 - Transition graph:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$. The functions $(z + 1)\lambda_{z,z+1}(\cdot)$, $z \in \mathcal{Z}$, and $\lambda_{z,0}(\cdot)$, $z \in \mathcal{Z} \setminus \{0\}$, are uniformly Lipschitz continuous on $M_1(\mathcal{Z})$.

- We make the following assumptions on the mean-field model.
 - Transition graph:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions (z + 1)λ_{z,z+1}(·), z ∈ Z, and λ_{z,0}(·), z ∈ Z \ {0}, are uniformly Lipschitz continuous on M₁(Z).
- There is a unique globally asymptotically stable equilibrium for the McKean-Vlasov equation (ξ*).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We make the following assumptions on the mean-field model.
 - Transition graph:

• There exist positive constants $\overline{\lambda}$ and $\underline{\lambda}$ such that

$$\frac{\underline{\lambda}}{z+1} \leq \lambda_{z,z+1}(\xi) \leq \frac{\overline{\lambda}}{z+1}, \text{ and } \underline{\lambda} \leq \lambda_{z,0}(\xi) \leq \overline{\lambda},$$

for each $\xi \in M_1(\mathcal{Z})$.

- The functions (z + 1)λ_{z,z+1}(·), z ∈ Z, and λ_{z,0}(·), z ∈ Z \ {0}, are uniformly Lipschitz continuous on M₁(Z).
- There is a unique globally asymptotically stable equilibrium for the McKean-Vlasov equation (ξ*).
- Under the above assumptions, we first show that, for each $N \ge 1$, there is a unique invariant measure \wp^N for μ^N .

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Since V has compact level sets, it cannot be continuous.

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

- Since V has compact level sets, it cannot be continuous.
- ▶ We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.

- Since V has compact level sets, it cannot be continuous.
- We transfer the process-level uniform LDP for μ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - ► A continuity property of *V*:

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

- Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ▶ We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).
- Main ingredients in the proof:
 - A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

- Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ▶ We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).

Main ingredients in the proof:

- A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.
- ► The process-level uniform LDP for {µ^N} over compact subsets of M₁(Z).

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

- Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ▶ We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).

Main ingredients in the proof:

- A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.
- ► The process-level uniform LDP for {µ^N} over compact subsets of M₁(Z).
- The strong Markov property of μ^N .

Theorem

Under the above assumptions, the family $\{\wp^N\}$ satisfies the LDP on $M_1(\mathcal{Z})$ with rate function V.

- ▶ Main difficulty: the space M₁(Z) is infinite dimensional. It is not locally compact.
- Since V has compact level sets, it cannot be continuous.
- ▶ We transfer the process-level uniform LDP for µ^N to the stationary regime (Sowers (1992)).

Main ingredients in the proof:

- A continuity property of V: If $\xi_n \to \xi$ in $M_1(\mathcal{Z})$ and $\langle \xi_n, \vartheta \rangle \to \langle \xi, \vartheta \rangle$ as $n \to \infty$, then $V(\xi_n) \to V(\xi)$ as $n \to \infty$.
- ► The process-level uniform LDP for {µ^N} over compact subsets of M₁(Z).

(日本本語を本書を本書を入事)の(の)

- The strong Markov property of μ^N .
- Exponential tightness of $\{\wp^N\}$: $\wp^N(\{\xi: \langle \xi, \vartheta \rangle \le M\}^C) \le \exp\{-NM'\}$ for all N.

- Summary: LDP for the invariant measure in contable state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► A sufficient condition for it to be the rate function.

- Summary: LDP for the invariant measure in contable state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Summary: LDP for the invariant measure in contable state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A generalised quasipotential.

- Summary: LDP for the invariant measure in contable state mean-field models.
 - A counterexample where the Freidlin-Wentzell quasipotential is not the rate function.
 - A sufficient condition for it to be the rate function.
- Future directions:
 - Uniform LDP (over open sets) for countable-state mean-field models.
 - A generalised quasipotential.

Reference: arXiv:2110.12640

Thank you

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00