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System model

▶ Let Z denote the set of nonnegative integers.
▶ N particles. The state of the nth particle at time t is

XN
n (t) ∈ Z.

▶ There are certain allowed transitions: (Z, E).
▶ The empirical measure of system of particles at time t:

µN(t) =
1

N

N∑
n=1

δXN
n (t) ∈ M1(Z).

▶ For each (z , z ′) ∈ E , we are given a function
λz,z ′ : M1(Z) → R+.

▶ At time t, a particle at state z makes a z → z ′ transition at
rate λz,z ′(µ

N(t)).
▶ µN is a Markov process with state space M1(Z). Under

suitable assumptions, it possess an invariant probability
measure ℘N .

▶ Goal: study the large deviations of the family {℘N ,N ≥ 1}.
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Large deviation principle (LDP)

▶ Let S be a complete and separable metric space. Let
{XN ,N ≥ 1} be a sequence of S-valued random variables.

▶ Roughly, P(XN ∈ A) ∼ exp{−N infx∈A I (x)}, where
I : S → [0,∞].

Definition (Varadhan, 1966)

{XN ,N ≥ 1} is said to satisfy the LDP on S with rate function
I : S → [0,∞] if

• for each M > 0, {x ∈ S : I (x) ≤ M} is a compact subset of S ;

• for each open set G ⊂ S

lim inf
N→∞

1

N
logP(XN ∈ G ) ≥ − inf

x∈G
I (x);

• for each closed set F ⊂ S

lim sup
N→∞

1

N
logP(XN ∈ F ) ≤ − inf

x∈F
I (x).
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Process-level large deviations

▶ Recall that we want to study the large deviations of {℘N}.

ν

Mean-field limit
(McKean-Vlasov equation)

Another path µ.
Prob ≈ e−NS[0,T ](µ|ν).

▶ Assume that ξ∗ is the unique global attractor of the
McKean-Vlasov equation.

▶ Let µN(0) → ν in M1(Z). Then the process {µN} satisfies
the LDP on D([0,T ],M1(Z)) with rate function S[0,T ](·|ν).

▶ Define the Freidlin-Wentzell quasipotential

V (ξ) = inf{S[0,T ](φ|ξ∗), φ0 = ξ∗, φT = ξ,T > 0}, ξ ∈ M1(Z).

▶ V is a candidate rate function for the family {℘N}.
▶ This is indeed the case in many models, e.g., finite-state

mean-field models, small-noise diffusions.
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A counterexample

▶ Consider N independent, identical, positive recurrent M/M/1
queues. Let ξ∗ be the stationary distribution of one queue.
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▶ There is a unique ℘N for each N. By Sanov’s theorem, the
family {℘N} satisfies the LDP with rate function I (·∥ξ∗).

▶ Recall the Freidlin-Wentzell quasipotential

V (ξ) = inf{S[0,T ](φ|ξ∗), φ0 = ξ∗, φT = ξ,T > 0}, ξ ∈ M1(Z).

▶ We show that V ̸= I (·∥ξ∗). Let ϑ(z) = z log z .
▶ If ξ ∈ M1(Z) is such that

∑
zξ(z) < ∞ and∑

ϑ(z)ξ(z) = ∞, then V (ξ) = ∞ but I (ξ∥ξ∗) < ∞.

▶ Thus, the quasipotential V does not govern the LDP for the
family {℘N}.
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Assumptions and main result

▶ We make the following assumptions on the mean-field model.
▶ Transition graph:l l l l0 1 2 r- - - -

��
�

p p p p p p

▶ There exist positive constants λ and λ such that

λ

z + 1
≤ λz,z+1(ξ) ≤

λ

z + 1
, and λ ≤ λz,0(ξ) ≤ λ,

for each ξ ∈ M1(Z).
▶ The functions (z + 1)λz,z+1(·), z ∈ Z, and λz,0(·),

z ∈ Z \ {0}, are uniformly Lipschitz continuous on M1(Z).
▶ There is a unique globally asymptotically stable equilibrium for

the McKean-Vlasov equation (ξ∗).

▶ Under the above assumptions, we first show that, for each
N ≥ 1, there is a unique invariant measure ℘N for µN .
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not locally compact.

▶ Since V has compact level sets, it cannot be continuous.

▶ We transfer the process-level uniform LDP for µN to the
stationary regime (Sowers (1992)).

▶ Main ingredients in the proof:
▶ A continuity property of V : If ξn → ξ in M1(Z) and

⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞, then V (ξn) → V (ξ) as n → ∞.
▶ The process-level uniform LDP for {µN} over compact subsets
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▶ The strong Markov property of µN .
▶ Exponential tightness of {℘N}:

℘N({ξ : ⟨ξ, ϑ⟩ ≤ M}C ) ≤ exp{−NM ′} for all N.
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▶ Summary: LDP for the invariant measure in contable state
mean-field models.
▶ A counterexample where the Freidlin-Wentzell quasipotential is

not the rate function.
▶ A sufficient condition for it to be the rate function.

▶ Future directions:
▶ Uniform LDP (over open sets) for countable-state mean-field

models.
▶ A generalised quasipotential.
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