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v

p is some property of a particle, e.g., collision probability of a
node in a WiFi network.

Attribute this property to each particle.
Interaction among the particles create a mean-field.

T is the response map to the induced mean-field.
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Self consistency demands that T(p) = p. Thatis, pis a
fixed-point of T.
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—— p = Response(Mean-field(p))

vvyyypy

v

p is some property of a particle, e.g., collision probability of a
node in a WiFi network.

Attribute this property to each particle.
Interaction among the particles create a mean-field.
T is the response map to the induced mean-field.

Self consistency demands that T(p) = p. Thatis, pis a
fixed-point of T.

Goal of this talk: explain the four levels of fixed-points in
mean-field models and their connections.
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A system of N interacting particles.

At time t, the state of the nth particle is XN(t) € Z.
Certain allowed transitions for the particle states: a directed
graph (Z,€)

Empirical measure of the system of particles at time t:

N
1
pn(t) = D dxney € MIY(2) € My(2).

n=1

We are given functions A, /() : Mi(Z) — R4, (z,2') € €.
Markov evolution. A particle at time t makes a z — 2/
transition at rate A,/ (un(t)).
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» N nodes sharing a common wireless medium. Slotted time.
» A node in state i transmits a packet with probability ¢;/N.

» Transitions: @_»@_’_@_’_ . @
W

» Consider a tagged node at state zy. The probability that no
other node transmits when the empirical measure is £ is

(1 B %)Nf(zo)—l H (1 _ %)NE(Z) ~ exp{—(c, &)}
zEZ,z#27

for large N. Same for all nodes.
» Transition rates of the continuous-time model:

(a/N)(em%@}) = cexp{—(c,6)}.

Nin(e) = HREZEBEEO) o - epi- (o).

Aio(€) =
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Consider the WiFi example. Each node's collision probability
is 7.

Let 5(ry) denote the attempt probability of the system.

The instants at which a node makes a successful transmission
are renewal instants.

By the renewal reward theorem,

Bly) T+l +~y(1+~(--)) )

N N N N AR N
Ny 2y

K 1-v ek

Since nodes attempt independently, the collision probability is

1= (1= B()/M)V ~1—exp{=B(7)}.

Let G(y) =1 —exp{—pB(7)}. Self consistency demands that
G(v) =7

If ¢;'s are decreasing, then there is a unique fixed-point for G.
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Suppose that the distribution of each particle’s state is &.
It creates a mean-field &.

Let m(&) denotes the equilibrium response of a tagged particle
to this mean-field.

m(§) is an m that solves the detailed balance equation

Somad ) =m Y A9, z€Z.

z':(2',z)e€ z':(z,2)e€

In other words, /\zm =0.

Self consistency demands that
m(§*) =&
That is, (A¢=)*¢* = 0.
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v

Consider the WiFi example. Let £* be a Level-2 fixed-point.
When the mean-field is £*, the collision probability is
approximately 1 — exp{—{(c, &*)}.

We expect that v* = 1 — exp{—(c,£*)} is a Level-1
fixed-point.

This can be checked by verifying G(7*) = v*.

Thus, Level-2 fixed-points explain Level-1 fixed-points.

Analogy with thermodynamics: ideal gas law.
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Let £(-) denote the evolution of the distribution of a tagged
particle. A measure-valued flow.

This creates a mean-field. At time t, it is close to £(t).
Particles evolve independently under this mean-field with rate
matrix Ag(y) at time t.

This creates a response probability distribution flow over time,
denoted by M (&(+)).

With m(t) = M(&(t)), we have

m(t)(z) = Y m(e)(Z)Aer 2 (E(8) = m(£)(2) D Aser(€(1))

z/:(z',z)e€ z':(z,2")e€

Self consistency demands that
M(E() = €7°()-

That is, £*(t) = (Aex(5))7€7(t), t >0, the McKean-Vlasov
equation (a non-linear ODE).
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Connection between Level-2 and Level-3

> Steady state behaviour.
> Let £ be a Level-2 fixed-point. That is, Az = 0.
> Let £(-) = £ Then £(t) = 0. So £(-) is a Level-3 fixed-point.

» Conversely, any stationary Level-3 fixed point £(-) is a Level-2
fixed-point.
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Let @ denote the law of evolution of a tagged particle.
Q € My(D([0, T], Z)). A time-inhomogeneous Markov
process.

Under Q, the marginal distribution of the tagged particle is
Qomt.
The mean-field approximately evolves as {Q o w; 1, t > 0}.

Particles evolve with rate matrix /\Qoﬂ_—l.
t

Let 7(Q) denotes the law of the evolution of the tagged
particle in response to this mean-field.

Self consistency demands that

T(Q") =Q".
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Let Q be a Level-4 fixed-point.

Let Q(t) = Qowt_l.

Since the marginal distribution of a particle at time t is Q(t),
we have

Q(t) = Ao Q(1)-

That is, Q(-) is a Level-3 fixed-point.

Conversely, let us consider a Level-3 fixed-point

{Q(t),t >0}. Clearly, Qe T{R: Rom;* = Q(t),t > 0}).
But the set T({R: Rom;* = Q(t),t > 0}) can possibly
contain other probability distributions.

If the transition rates are Lipschitz continuous, then there is a
one-one correspondence between Level-3 and Level-4.
(non-linear martingale problem)



The four levels - Summary

Property Space Fixed-point equation
Macroscopic observables G(v*) =+*
Dist. over states M (Z) m(&*) = &*
Evolution of dist. D([0, T],Mi(2)) | M(&*(})) =&*()
Dist. over trajectories | Mi(D([0, T], £)) T(Q*) = Q*
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Mean-field convergence
» Let pun(0) — v in distribution as N — oo for some
deterministic v.

» Then the process (un(t),t € [0, T]) converges to the solution
to the McKean-Vlasov equation

() = N yu(e), 1(0) = v, t € [0, T, (1)

in probability.
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Mean-field convergence
» Let pun(0) — v in distribution as N — oo for some
deterministic v.
» Then the process (un(t),t € [0, T]) converges to the solution
to the McKean-Vlasov equation

() = N yu(e), 1(0) = v, t € [0, T, (1)

in probability.
Decoupling approximation

» Consider two tagged particles, 1 and 2.

> Let the initial conditions be exchangeable and let ppn(0) — v
in distribution as N — oo for some deterministic v.

» Then (X{V(t), X2V(t)) converges in distribution to
(Y1(t), Ya(t)) where both Yi(t) and Y>(t) are distributed as
the solution to (1) at time t with initial condition v, and they
are independent.
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» Performance analysis when there is a unique fixed-point.

» For the standard WiFi protocol, a fixed-point of G(y*) = ~* is
a good approximation of the collision probability.
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» Multiple fixed-points and/or limit cycles. Need a finer analysis.
» Short-term unfairness at the level of particles.

Thank you



