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Introduction

p = Response(Mean-field(p))

▶ p is some property of a particle, e.g., collision probability of a
node in a WiFi network.

▶ Attribute this property to each particle.

▶ Interaction among the particles create a mean-field.

▶ T is the response map to the induced mean-field.

▶ Self consistency demands that T (p) = p. That is, p is a
fixed-point of T .

▶ Goal of this talk: explain the four levels of fixed-points in
mean-field models and their connections.
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System model

▶ A system of N interacting particles.

▶ At time t, the state of the nth particle is XN
n (t) ∈ Z.

▶ Certain allowed transitions for the particle states: a directed
graph (Z, E)

▶ Empirical measure of the system of particles at time t:

µN(t) :=
1

N

N∑
n=1

δXN
n (t) ∈ MN

1 (Z) ⊂ M1(Z).

▶ We are given functions λz,z ′(·) : M1(Z) → R+, (z , z
′) ∈ E .

▶ Markov evolution. A particle at time t makes a z → z ′

transition at rate λz,z ′(µN(t)).
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Example: A wireless local area network

▶ N nodes sharing a common wireless medium. Slotted time.

▶ A node in state i transmits a packet with probability ci/N.

▶ Transitions: n n n n0 1 2 K- - -

� �
�

q q q
▶ Consider a tagged node at state z0. The probability that no

other node transmits when the empirical measure is ξ is(
1− cz0

N

)
Nξ(z0)−1

∏
z∈Z,z ̸=z0

(
1− cz

N

)Nξ(z)

≃ exp{−⟨c , ξ⟩}

for large N. Same for all nodes.
▶ Transition rates of the continuous-time model:

λi,0(ξ) =
(ci/N)(exp{−⟨c , ξ⟩})

1/N
= ci exp{−⟨c , ξ⟩}.

λi,i+1(ξ) =
(ci/N)(1− exp{−⟨c , ξ⟩})

1/N
= ci (1− exp{−⟨c , ξ⟩}).
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Level-1: Macroscopic observables

▶ Consider the WiFi example. Each node’s collision probability
is γ.

▶ Let β(γ) denote the attempt probability of the system.
▶ The instants at which a node makes a successful transmission

are renewal instants.
▶ By the renewal reward theorem,

β(γ)

N
=

1 + γ(1 + γ(1 + γ(· · · )) · · · )
N
c0

+ γN
c1

+ · · ·+ γKN
cK

+ γK+1

1−γ · N
cK

.

▶ Since nodes attempt independently, the collision probability is

1− (1− β(γ)/N)N−1 ≃ 1− exp{−β(γ)}.

▶ Let G (γ) = 1− exp{−β(γ)}. Self consistency demands that

G (γ∗) = γ∗.

▶ If ci ’s are decreasing, then there is a unique fixed-point for G .
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Level-2: Distribution over states

▶ Suppose that the distribution of each particle’s state is ξ.

▶ It creates a mean-field ξ.

▶ Let m(ξ) denotes the equilibrium response of a tagged particle
to this mean-field.

▶ m(ξ) is an m that solves the detailed balance equation∑
z ′:(z ′,z)∈E

mz ′λz ′,z(ξ) = mz

∑
z ′:(z,z ′)∈E

λz,z ′(ξ), z ∈ Z.

▶ In other words, Λ∗
ξm = 0.

▶ Self consistency demands that

m(ξ∗) = ξ∗.

▶ That is, (Λξ∗)
∗ξ∗ = 0.
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Connection between Level-1 and Level-2

▶ Consider the WiFi example. Let ξ∗ be a Level-2 fixed-point.

▶ When the mean-field is ξ∗, the collision probability is
approximately 1− exp{−⟨c, ξ∗⟩}.

▶ We expect that γ∗ = 1− exp{−⟨c , ξ∗⟩} is a Level-1
fixed-point.

▶ This can be checked by verifying G (γ∗) = γ∗.

▶ Thus, Level-2 fixed-points explain Level-1 fixed-points.

▶ Analogy with thermodynamics: ideal gas law.
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Level-3: Time evolution of distribution over states

▶ Let ξ(·) denote the evolution of the distribution of a tagged
particle. A measure-valued flow.

▶ This creates a mean-field. At time t, it is close to ξ(t).
▶ Particles evolve independently under this mean-field with rate

matrix Λξ(t) at time t.
▶ This creates a response probability distribution flow over time,

denoted by M(ξ(·)).
▶ With m(t) = M(ξ(t)), we have

ṁ(t)(z) =
∑

z′:(z′,z)∈E

m(t)(z ′)λz′,z(ξ(t))−m(t)(z)
∑

z′:(z,z′)∈E

λz,z′(ξ(t))

= (Λ∗
ξ(t)m(t))(z), z ∈ Z, t ≥ 0.

▶ Self consistency demands that

M(ξ∗(·)) = ξ∗(·).

▶ That is, ξ̇∗(t) = (Λξ∗(t))
∗ξ∗(t), t ≥ 0, the McKean-Vlasov

equation (a non-linear ODE).
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ṁ(t)(z) =
∑

z′:(z′,z)∈E

m(t)(z ′)λz′,z(ξ(t))−m(t)(z)
∑

z′:(z,z′)∈E

λz,z′(ξ(t))

= (Λ∗
ξ(t)m(t))(z), z ∈ Z, t ≥ 0.

▶ Self consistency demands that

M(ξ∗(·)) = ξ∗(·).

▶ That is, ξ̇∗(t) = (Λξ∗(t))
∗ξ∗(t), t ≥ 0, the McKean-Vlasov

equation (a non-linear ODE).



Level-3: Time evolution of distribution over states

▶ Let ξ(·) denote the evolution of the distribution of a tagged
particle. A measure-valued flow.

▶ This creates a mean-field. At time t, it is close to ξ(t).
▶ Particles evolve independently under this mean-field with rate

matrix Λξ(t) at time t.
▶ This creates a response probability distribution flow over time,

denoted by M(ξ(·)).

▶ With m(t) = M(ξ(t)), we have
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Connection between Level-2 and Level-3

▶ Steady state behaviour.

▶ Let ξ be a Level-2 fixed-point. That is, Λ∗
ξξ = 0.

▶ Let ξ(·) ≡ ξ. Then ξ̇(t) = 0. So ξ(·) is a Level-3 fixed-point.

▶ Conversely, any stationary Level-3 fixed point ξ(·) is a Level-2
fixed-point.
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Level-4: Distribution over trajectories

▶ Let Q denote the law of evolution of a tagged particle.
Q ∈ M1(D([0,T ],Z)). A time-inhomogeneous Markov
process.

▶ Under Q, the marginal distribution of the tagged particle is
Q ◦ π−1

t .

▶ The mean-field approximately evolves as {Q ◦ π−1
t , t ≥ 0}.

▶ Particles evolve with rate matrix ΛQ◦π−1
t
.

▶ Let T (Q) denotes the law of the evolution of the tagged
particle in response to this mean-field.

▶ Self consistency demands that

T (Q∗) = Q∗.
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Connection between Level-3 and Level-4

▶ Let Q be a Level-4 fixed-point.

▶ Let Q(t) = Q ◦ π−1
t .

▶ Since the marginal distribution of a particle at time t is Q(t),
we have

Q̇(t) = Λ∗
Q(t)Q(t).

▶ That is, Q(·) is a Level-3 fixed-point.

▶ Conversely, let us consider a Level-3 fixed-point
{Q(t), t ≥ 0}. Clearly, Q ∈ T ({R : R ◦ π−1

t = Q(t), t ≥ 0}).
▶ But the set T ({R : R ◦ π−1

t = Q(t), t ≥ 0}) can possibly
contain other probability distributions.

▶ If the transition rates are Lipschitz continuous, then there is a
one-one correspondence between Level-3 and Level-4.
(non-linear martingale problem)
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The four levels - Summary

Property Space Fixed-point equation

Macroscopic observables G (γ∗) = γ∗

Dist. over states M1(Z) m(ξ∗) = ξ∗

Evolution of dist. D([0,T ],M1(Z)) M(ξ∗(·)) = ξ∗(·)
Dist. over trajectories M1(D([0,T ],Z)) T (Q∗) = Q∗



Making the analysis rigorous

Mean-field convergence

▶ Let µN(0) → ν in distribution as N → ∞ for some
deterministic ν.

▶ Then the process (µN(t), t ∈ [0,T ]) converges to the solution
to the McKean-Vlasov equation

µ̇(t) = Λ∗
µ(t)µ(t), µ(0) = ν, t ∈ [0,T ], (1)

in probability.

Decoupling approximation

▶ Consider two tagged particles, 1 and 2.

▶ Let the initial conditions be exchangeable and let µN(0) → ν
in distribution as N → ∞ for some deterministic ν.

▶ Then (XN
1 (t),XN

2 (t)) converges in distribution to
(Y1(t),Y2(t)) where both Y1(t) and Y2(t) are distributed as
the solution to (1) at time t with initial condition ν, and they
are independent.
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Beyond the fixed-point analysis

▶ Performance analysis when there is a unique fixed-point.
▶ For the standard WiFi protocol, a fixed-point of G (γ∗) = γ∗ is

a good approximation of the collision probability.

▶ Multiple fixed-points and/or limit cycles. Need a finer analysis.

▶ Short-term unfairness at the level of particles.

Thank you
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