
Large Time Behaviour and Metastability in

Mean-Field Interacting Particle Systems

A Thesis

Submitted for the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Sarath Ampadi Yasodharan

Electrical Communication Engineering

Indian Institute of Science

Bangalore – 560 012 (INDIA)

January 2022





© Sarath Ampadi Yasodharan

January 2022

All rights reserved





Abstract

This thesis studies the large time behaviour and metastability in weakly interacting Markov pro-

cesses with jumps. Our motivation is to quantify the large time behaviour of various networked

systems that arise in practice.

The first set of results are for finite-state mean-field interacting particle systems. We first

obtain a sharp estimate (in the exponential scale) on the time required for convergence of the

empirical measure process of the N -particle system to its invariant measure; we show that

when time is of the order of exp{NΛ} for a suitable constant Λ > 0, the process has mixed

well and it is close to its invariant measure. We then obtain large-N asymptotics of the second

largest eigenvalue of the generator associated with the empirical measure process when it is

reversible with respect to its invariant measure. We show that its absolute value scales as

exp{−NΛ}. The main tools used in establishing these results are the large deviation properties

of the empirical measure process from its large-N limit. As an application of the study of the

large time behaviour, we also show the convergence of the empirical measure of the system of

particles to a global minimum of a certain ‘entropy’ function when particles are added over time

in a controlled fashion. The controlled addition of particles is analogous to the cooling schedule

associated with the search for a global minimum of a function using the simulated annealing

algorithm.

We then consider an extension of this finite-state mean-field model in which the particles

are subject to a fast varying random environment. The second result of this thesis is the path-

space large deviation principle (LDP) for the joint law of the empirical measure process of the

particles and the occupation measure process of the fast environment. This extends previous

results known for two time scale diffusions to two time scale mean-field models with jumps.

Our proof is based on the method of stochastic exponentials. We characterise the rate function

by studying a certain variational problem associated with an exponential martingale.

The third result is on the asymptotics of the invariant measure in countable-state mean-

field models. The Freidlin-Wentzell quasipotential is the usual candidate rate function for the

sequence of invariant measures indexed by the number of particles. We first provide two coun-
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Abstract

terexamples where the quasipotential is not the rate function. The quasipotential arises from

finite horizon considerations. However there are certain barriers that cannot be surmounted

easily in any finite time horizon, but these barriers can be crossed in the stationary regime. Con-

sequently, the quasipotential is infinite at some points where the rate function is finite. After

highlighting this phenomenon, we study some sufficient conditions on a class of interacting par-

ticle systems under which one can continue to assert that the Freidlin-Wentzell quasipotential

is indeed the rate function.
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Chapter 1

Introduction

This thesis studies the large time behaviour and metastability in Markovian mean-field inter-

acting particle systems. Our motivation to study such questions comes from the performance

analysis of networked system such as loss networks, wireless local area networks, load balancing

networks, etc. Many of these networked systems can be abstracted using suitable models of

Markovian mean-field interacting particle systems, and the goal of this thesis is to understand

and quantify the large time behaviour of these models.

Let us begin with an illustration of the metastability phenomenon using a simple example of

a double-well potential. Consider the one-dimensional dynamical system dXt = −U ′(Xt)dt, t ≥
0, where the function U is depicted in Figure 1.1(a). The function U has two local minima,

labelled at points a and b, and a critical point at the origin. If this system is initiated at

a point to the left of a (resp. to the right of b), it would move towards the local minimum

a (resp. b), as shown by the black arrows. We say that a and b are stable equilibria of the

dynamical system. If the system is started at the origin, it stays at the origin forever. We now

consider a noisy perturbation of this dynamical system by adding a small amount of Gaussian

noise. Let Bt, t ≥ 0, denote a standard one-dimensional Brownian motion and consider the

noisy system dXε
t = −U ′(Xε

t )dt +
√
εdBt, t ≥ 0, where ε > 0 is a small parameter. Since

the noise is small, similar to the deterministic dynamical system, trajectories starting at points

to the left of a (resp. to the right b) move towards a (resp. b). However, since the system is

noisy, trajectories that stay in a neighbourhood of b could potentially climb the barrier and

move to a neighbourhood of a, and vice-versa. Such a transition from a neighbourhood of b

to a neighbourhood of a is depicted in Figure 1.1(b). It turns out that such transitions can

be observed over time durations of the form exp{constant/ε} for a suitable constant. Thus we

find that the trajectories of the above noisy system exhibit different behaviour over different

time scales. On one hand, if we focus on a fixed time duration and consider the system for a
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Figure 1.1: Illustration of the metastability phenomenon using the double-well potential. Fig-
ure (a) depicts trajectories of the dynamical system under consideration and figure (b) depicts
a transition from a neighbourhood of b to a neighbourhood of a when this dynamical system is
subject to a small random perturbation.

small ε > 0, then it would most likely track a trajectory of the deterministic dynamical system.

On the other hand, if we consider time durations of the form exp{constant/ε} for small ε > 0,

then we would observe transitions from one equilibrium to the other. Such a phenomenon

where a system exhibits different dynamical behaviour over different time scales is referred to

as metastability.

For the models of mean-field interacting particle systems considered in this thesis, the

empirical measure of the system of particles can be viewed as a small random perturbation

of a certain limiting dynamical system that evolves on the space of probability measures on a

suitable set. The vector-field of this limiting dynamical system creates many stable equilibria,

limit cycles, and/or chaotic attractors (see Figure 1.2 for an illustration). Typically a stable

equilibrium is associated with a certain performance metric of the system under study; for

instance, in the context of a wireless local area network, a stable equilibrium is associated with

a certain average throughput of the system. Transitions between stable equilibria of the state

space occur in these systems over large time durations, see Figure 1.2 for a transition from a

neighbourhood of a to a neighbourhood of b. Therefore, from the point of view of performance

analysis of these systems, one is interested in quantifying (i) the mean time spent by the system

in a neighbourhood of an equilibrium, (ii) the probability of transiting to a neighbourhood of

a given equilibrium before reaching another one, etc. Furthermore, owing to the presence of

multiple equilibria, the system may get trapped in some undesired equilibrium for a long time.

This results in slower convergence of the system to its stationary behaviour. Thus, one is also

interested in quantifying the mixing time of these systems. The goal of this thesis is to quantify

such large time behaviour in models of Markovian mean-field interacting particle systems.
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a

b

c

Figure 1.2: Illustration of the metastability phenomenon using an abstract dynamical system.
The points a and b are two stable equilibria and c is a stable limit cycle of the dynamical
system. Thick black arrows indicate the trajectories of the unperturbed dynamical system.
Light black boundaries demarcate the basins of attraction of these ω-limit sets. The zig-zag
curve indicates a sample path of a small random perturbation of the dynamical system over a
large time duration. The random process starts in the basin of attraction of the equilibrium a,
reaches a small neighbourhood of a, spends a lot of time there, and then makes a transition to
a small neighbourhood of the equilibrium b.

1.1 Motivating examples

The motivation to study the questions addressed in this thesis is to quantify the large time

behaviour and metastability phenomenon in a variety of applications that arise in practice.

These applications include engineered system such as load balancing networks [2, 1, 65, 64, 41],

wireless local area networks [10, 6, 14, 51, 75, 11], retrial queues [4], loss networks [46], and

natural systems such as grammar acquisition, sexual evolution [68, 69], and epidemic spread [54,

3], to name a few. For a generic introduction to metastability and other stochastic models where

it arises, see [67, 16]. In this section, we describe two applications that can be modelled using

the mean-field interacting particle systems considered in this thesis. These two examples are (i)

dynamic alternate routing in loss networks, and (ii) distributed medium access control protocols

in wireless local area networks.

1.1.1 Loss networks with dynamic alternate routing

Consider N links (also called particles). Each link has C units of resources available with it.

Calls arrive to each link according to independent Poisson point processes of rate λ. Each call

3



requires one unit of resource. When a link has at most C − 1 calls in progress, an incoming

call to that link is accepted and it occupies a random amount of time on that link which is

distributed according to an exponential random variable with unit mean. When an arriving

call to a link finds that it is fully occupied (i.e., when there are C calls in progress), then two

other links are randomly picked and the call is rerouted to both. If both these links are not

fully occupied, then the call behaves as two independent calls and they occupy both those links

for independent random amounts of time distributed as exponential random variables with unit

mean. If not (i.e., when at least one of those two links are fully occupied), the call gets rejected

from the system. This model arises in the context of loss networks with dynamic alternate

routing (see [40]).

Let XN
n (t) denote the number of calls in progress on the nth link at time t. This is the state

of the nth particle at time t. Let µN(t) := 1
N

∑N
n=1 δXN

n (t) denote the empirical measure of the

states of all the particles at time t; µN(t)(c), 0 ≤ c ≤ C, denotes the fraction of links with c

calls in progress at time t. We can write down the transition rates of each particle in terms of

the empirical measure µN . Consider a tagged particle n. Let c denote its state at time t and let

ξ denote the empirical measure of the system of particles at time t. Then the transition rates

of the nth particle at time t are as follows:

c →

{
c− 1 at rate c, if c ≥ 1,

c+ 1 at rate λ+Nλξ(C)× 2(1−ξ(C))
N−1

, if c ≤ C − 1.

The first transition corresponds to a call leaving the nth link after completion and the second

transition corresponds to an incoming call to the nth link. An increment in the number of

calls on the nth link could either be because of the incoming request to the nth link (at

rate λ) or because of a rerouted request from another link that is fully occupied (at rate

Nλξ(C)× 2(1−ξ(C))
N−1

). We thus find that the transition rates of a particle depend on the states

of the other particles only through the empirical measure of the states of all the particles. This

model falls within the framework of a finite-state mean-field interacting particle system studied

in Chapter 2.

For each T > 0, the empirical measure process {µN(t), t ∈ [0, T ]} can be viewed as a small

random perturbation of a certain dynamical system that evolves on the space of probability

measure on {0, 1, . . . , C}. It can be shown that the noisy process converges to this limiting

dynamical system as N → ∞ in the space of trajectories, in probability. It is known that such

models exhibit metastability [40]. For certain choices of the model parameters, it turns out that

this dynamical system possesses two stable equilibria and an unstable equilibrium. Therefore,

4



one can observe transitions (similar to the one depicted in Figure 1.1) between the stable

equilibria of this dynamical system over large time durations. See Tibi [85] for some estimates

on the exit times. More recently, Olesker-Taylor [66] established that under the regime where

the system exhibits metastability, the mixing time of the process {µN(t), t ≥ 0} is exponential

in the number of links. In Chapter 2 of this thesis, we consider a generic finite-state mean-field

interacting particle system and study its large time behaviour and convergence to stationary.

From these results, we can quantify the large time behaviour and metastability in loss networks

with dynamic alternate routing.

1.1.2 Wireless local area networks with multiple classes of users

Let there be N nodes in a wireless local area network (WLAN). Time is divided into slots. Each

node has a state associated with it, which represents the probability of attempting a packet

transmission in a slot. Since the network could be spread over a large geographical area, the

nodes are grouped into C classes; every node that belongs to a class can hear the transmissions

of every other node in that class. Figure 1.3 depicts an example network with 7 nodes and 3

classes. The interaction among the nodes comes from the distributed channel access algorithm

executed by the nodes. This interaction results in the evolution of the state of each node in

the following fashion: a node that incurs a collision upon a packet transmission moves to a

different state with a reduced probability of attempt, and upon a successful transmission moves

to another state with an increased probability of attempt. Figure 1.4 depicts the set of allowed

transitions of a node; in typical WLAN implementations, the most aggressive state is 0 and the

least aggressive state isK. A node moves from state i to state i+1 when it incurs a collision, and

moves from state i to state 0 when a packet is successfully transmitted. Since multiple nodes

could transmit at the same slot, the channel corresponding to a class of nodes could be in three

different states in a given time slot: (i) an idle slot (denoted by state 0), (ii) a collision (state 2)

or (iii) a successful packet transmission (state 1). We refer to the channel state corresponding

to each class of nodes as the environment, i.e., at each time slot, the environment is an element

of {0, 1, 2}C with the cth coordinate representing the channel state of the cth class of nodes.

We now see how to translate this to an approximate continuous-time model for large N .

To describe the transition rates of the continuous time model, we shall consider a scaled

version of the above discrete time model where each time slot is of duration 1/N . Let pi/N

denote the attempt probability of a node in state i. Let A denote the interference matrix among

the classes, specifically, Ac,d = 1 implies that a class c node’s transmission is interfered by a

class d node’s transmission. Let Vc = {d : Ac,d = 1} denote the classes that interfere with class

5



Figure 1.3: A wireless local area network with 3 classes and 7 users; interference among classes
are indicated by arrows.
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Figure 1.4: Set of allowed transitions for a particle in a WLAN.

c nodes’ transmissions; in particular, c ∈ Vc. Consider an epoch. For each i ∈ {0, 1, . . . , K}
and c ∈ {1, 2, . . . , C}, let ξci denote the fraction of nodes (among the nodes in class c) in state i.

Let y ∈ {0, 1, 2}C denote the state of the environment. At this epoch, a tagged node n0 in state

i ̸= 0 in class c moves to state 0 when it successfully transmits a packet. This occurs when the

following are true: (i) the tagged node transmits, (ii) there is no interference from the other

nodes in class c (which occurs when every other node in class c could potentially transmit, i.e.,

there is no interference from any node in the set of classes Vc, but no one transmits), and (iii)

there is no interference from the nodes in the other classes in Vc except c. The product of the

probabilities of these events can be written as

the tagged node n0 in state i transmits︷︸︸︷
pi
N

·

all classes in Vc are idle and no other node in class c transmits︷ ︸︸ ︷(∏
d∈Vc

1{yd=0}

)
·

( ∏
n∈c,n̸=n0

(
1−

pstate(n)
N

))

×
∏

d∈Vc,d ̸=c


(∏

d′∈Vd

1{yd′=0}

)
·

(∏
n∈d

(
1−

pstate(n)
N

))
︸ ︷︷ ︸

all classes in Vd are idle and no node in class d transmits

+

(
1−

∏
d′∈Vd

1{yd′=0}

)
︸ ︷︷ ︸
some class in Vd is not idle

 ,

where 1{·} denotes the indicator function and state(n) denotes the state of the nth node at the

epoch under consideration. Scaling the above by N , and noting that
∏

n∈d(1 − pstate(n)/N) ∼
exp{−

∑K
i=0 piξ

d
i } and the term exp{−

∑K
i=0 piξ

c
i } arising from the first line above can be ab-

6



sorbed in the product in the second line, the corresponding transition rate of the continuous

time model at this epoch can be approximated as

pi

(∏
d∈Vc

1{yd=0}

)
×
∏
d∈Vc

{(∏
d′∈Vd

1{yd′=0}

)(
exp

{
−

K∑
i=0

piξ
d
i

}
− 1

)
+ 1

}
;

Similarly, a tagged node in state i moves to state i + 1 when it incurs a collision. This occurs

when (i) the tagged node transmits, and (ii) at least another node from either class c or any

other class from Vc transmits. Proceeding as above, the transition rate of a class c node from

state i to state i+ 1 is

pi

(∏
d∈Vc

1{yd=0}

)
×

[
1−

∏
d∈Vc

{(∏
d′∈Vd

1{yd′=0}

)(
exp

{
−

K∑
i=0

piξ
d
i

}
− 1

)
+ 1

}]
.

We can also write down the transition rates of the environment. For example, a transition from

the all-0 state to the state y with yc = 1 and yd = 0 for all d ̸= c (which happens when any

node in class c makes a successful transmission) occurs with probability

∑
n∈c

node n in class c transmits︷ ︸︸ ︷
pstate(n)

N
×

no other node in class c transmits︷ ︸︸ ︷∏
n′∈c,n′ ̸=n

(
1−

pstate(n′)

N

)

As before, scaling the above with N , the corresponding transition rate for the continuous time

model is (
N

K∑
i=0

piξ
c
i

)
× exp

{
−

K∑
i=0

piξ
c
i

}
.

From the above description, we see that the transition rates of a node at time t depend

on the state of the environment at time t and the empirical measure of the states (via the

attempt probabilities) of all the nodes of its neighbouring classes at time t. We also see that

the transition rates of the environment depend on the states of the nodes in that class, but only

through their empirical measures. Further, the environment makes O(N) many transitions over

a given O(1) time duration. Such a mean-field model where there is a time scale separation

between the particles and the environment falls in to the framework of two time scale mean-field

models studied in Chapter 3. In particular, if all the nodes are visible to each other, then one

7



Figure 1.5: A sample path of the evolution of the empirical measure in a WLAN under the
MAC protocol. The abscissa and the ordinate represent the fraction of nodes in states 0 and 1
respectively; the fraction of nodes in state 2 is such that the sum of the three is 1. The process
starts near the point (0.3, 0.7), spends a lot of time in a neighbourhood of (0.6, 0.4), and then
transitions to a neighbourhood of (0, 0).

can write down the transition rates of a node in terms of the empirical measure of the states of

all the nodes (without involving the channel state), which falls under the finite-state mean-field

model considered in Chapter 2.

A study of the law of large numbers for the above two time scale model in the large-N

regime has been done by Bordenave et al. [14] towards understanding the average throughput

obtained by a node in a given class. The results of Chapter 3 of this thesis provide a finer

asymptotic analysis, in the realm of large deviations, which enables us to study the large time

behaviour and metastability in such systems.

We now demonstrate the metastability phenomenon in a WLAN with a single class of

users using a numerical example. Let us consider a WLAN consisting of 30 nodes, accessing a

common wireless medium using the standard 802.11 medium access control (MAC) protocol [52,

Chapter 7]. In this example, each node can be in three states (i.e., K = 2). A sample path

of the evolution of the fraction of nodes in each state is shown in Figure 1.5. This example is

designed in such a way that there are two stable equilibria in the system, one near (0.6, 0.4)

which is the “good” equilibrium in the sense that every node gets a fair amount of access to

the channel, and the other near (0, 0), which is the “bad” equilibrium, where every node keeps

on attempting for a transmission which results in nobody getting access to the channel. As
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shown in the figure, the system is initialised at a point near (0.3, 0.7) and it remains in the

neighbourhood of the “good” equilibrium for a long time (about 106 slots), but eventually it

finds its way to the “bad” equilibrium (0, 0). Thus, even though the desired operating point

is near (0.6, 0.4), the network eventually transits to a neighbourhood of (0, 0) leading to a

low network throughput. If we wait long enough, we would also see another transition from

a neighbourhood of the “bad” equilibrium to the “good” equilibrium. This is an example of

the metastability phenomenon observed in WLANs. The goal of this thesis is to quantify such

phenomena.

1.2 Summary of results

Since this thesis studies the large time behaviour and metastability in mean-field models, as

illustrated in the previous section, our primarily focus is to understand and quantify various

rare events associated with mean-field interacting particle systems. In this thesis, we use the

theory of large deviations to quantify the probabilities of rare events. Roughly speaking, the

theory of large deviations quantifies the probabilities of rare events in the following form: for

a sequence of S-valued random variables {XN , N ≥ 1} and a set A ⊂ S, the probability of

the event {XN ∈ A} is given by exp{−N infx∈A I(x)}, where I : S → [0,∞] is called the rate

function. A more precise definition is given below.

Definition 1.1 (Large deviation principle). Let (S, d0) be a metric space. We say that a family

{XN , N ≥ 1} of S-valued random variables defined on a probability space (Ω,F , P ) satisfies

the large deviation principle (LDP) with rate function I : S → [0,∞] if

• (Compactness of level sets). For any s ≥ 0, Φ(s) := {x ∈ S : I(x) ≤ s} is a compact

subset of S;

• (LDP lower bound). For any γ > 0, δ > 0, and x ∈ S, there exists N0 ≥ 1 such that

P (d0(X
N , x) < δ) ≥ exp{−N(I(x) + γ)}

for any N ≥ N0;

• (LDP upper bound). For any γ > 0, δ > 0, and s > 0, there exists N0 ≥ 1 such that

P (d0(X
N ,Φ(s)) ≥ δ) ≤ exp{−N(s− γ)}

for any N ≥ N0.
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For the problems studied in this thesis, the metric space in the above definition may either be

the space of probability measure-valued trajectories on a finite time interval or the space of

probability measures on a suitable set. The first case corresponds to the study of the process-

level large deviations of random processes arising in various contexts and the second corresponds

to the study of the large deviations of the family of invariant measures of these processes. With

this brief introduction to large deviations, we now summarise the results of this thesis.

Large time behaviour of finite-state mean-field models (Chapter 2): This chapter

studies the large time behaviour and metastability in finite-state mean-field models. We con-

sider N particles. Each particle has a state associated with it which comes from a finite set

Z. The state of the nth particle at time t is denoted by XN
n (t) ∈ Z. These states evolve over

time in a Markovian fashion. The set of allowed transitions for the particles is described by a

directed graph (Z, E). The empirical measure of the system of particles at time t is defined by

µN(t) := 1
N

∑N
n=1 δXN

n (t), where δ denotes the Dirac measure on Z. The states of the particles

change over time as follows. At time t, a particle in state z makes a z → z′ transition at rate

λz,z′(µ
N(t)), where λz,z′ , (z, z

′) ∈ E , are given functions on the space of probability measure on

Z. That is, the evolution of the state of a particle depends on the states of the other particles

only through the empirical measure of the states of all the particles.

In this setting, under suitable assumptions on the model, we establish three results. The

first result quantifies the convergence of the process µN to its invariant measure. We show

that there is a constant Λ (which is described in terms of the structure of a certain limiting

dynamical system) such that when time is of the order exp{N(Λ+δ)} for any δ > 0, the process

µN has mixed well and it is close to its invariant measure, regardless of the initial condition

(see Theorem 2.1). The main ingredients in the proof of this result are the quantifications of

the large time behaviour of the process µN , which are of independent interest. We also prove

that this constant Λ is sharp (see Theorem 2.2). The second result is on the asymptotics of the

second largest eigenvalue of the generator of the process µN when it is reversible with respect

to its invariant measure; we show that it scales as exp{−NΛ} (see Theorem 2.3). In the third

result, we show that we can steer the process µN via controlled addition of the particles over

time so that, with probability 1 − o(1) (as time becomes large), the process µN converges to

a small neighbourhood of a global minimum of a certain entropy function (see Theorem 2.4).

This is reminiscent of the simulated annealing algorithm to find a global minimum of a given

function using noisy dynamical systems.

Process-level large deviations of two time scale mean-field models (Chapter 3): This

chapter studies the large deviations of a two time scale mean-field interacting particle system.
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This model is an extension of the model considered in Chapter 2. We consider N particles

and an environment. Their states evolve over time in a Markovian fashion. Let XN
n (t) denote

the state of the nth particle and Y N(t) denote the state of the environment at time t. The

states of the particles come from a finite set X and that of the environment comes from a

finite set Y . As before, we define the empirical measure of the system of particles at time t

as µN(t) := 1
N

∑N
n=1 δXN

n (t). At time t, a particle in state x makes an x → x′ transition at

rate λx,x′(µN(t), Y N(t)), and the environment in state y makes a y → y′ transition at rate

Nγy,y′(µ
N(t)). That is, the transition rates of a particle depend on the states of the other

particles through the empirical measure of the states of all the particles and the state of the

environment, and the transition rates of the environment depend on the empirical measure.

We also note that the environment evolves in a faster time scale; hence there is time scale

separation between the particles and the environment.

In Chapter 3, under suitable assumptions on the above model, we prove a large deviation

principle for the joint law of the empirical measure process of the particles and the occupation

measure process of the fast environment (see Theorem 3.1). The rate function for this large

deviation principle is governed by “costs” associated with trajectories on suitable path-spaces.

Using this result and the results on the large time behaviour of finite-state mean-field models

established in Chapter 2, we can study the large time behaviour and metastability in mean-field

models with time scale separation.

Large deviations of the invariant measure in countable-state mean-field models

(Chapter 4): This chapter studies mean-field interacting particle systems with a countable

state space. Let Z denote the set of nonnegative integers and let (Z, E) denote a directed graph.

As before, we consider N particles. LetXN
n (t) denote the state of the nth particle at time t. The

empirical measure of the system of particles at time t is defined by µN(t) := 1
N

∑N
n=1 δXN

n (t). At

time t, a particle from state z moves to state z′ at rate λz,z′(µ
N(t)). Under suitable assumptions

on the model, the Markov process µN possesses a unique invariant probability measure ℘N ,

which is a probability measure on the space of probability measures on Z. We study the large

deviations of the family {℘N , N ≥ 1} in Chapter 4.

For a broad class of Markov processes such as small-noise diffusions, finite-state mean-field

models, simple exclusion processes, etc., it is well-known that the Freidlin-Wentzell quasipo-

tential is the rate function that governs the family of invariant measures. We first provide two

counterexamples of countable-state mean-field models where the family of invariant measures

satisfies the LDP whose rate function is governed by a certain relative entropy, which is not the

same as the quasipotential. Specifically, we show that there are points in the state space where
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the rate function is finite, but the quasipotential is infinite. We then impose some assump-

tions on the model, restricting attention to situations where such issues do not arise, and show

that the family of the invariant measures satisfies the large deviation principle on the space

of probability measure on Z whose rate function is indeed governed by the quasipotential (see

Theorem 4.1).

1.3 Organisation

This thesis is organised as follows. Chapter 2 studies the large time behaviour and metastability

in finite-state mean-field models. Chapter 3 studies the process-level large deviations of finite-

state mean-field models with time scale separation. Chapter 4 studies the large deviations of

the invariant measure in countable-state mean-field models. In the beginning of each chapter,

we describe the setting of the problem, notations, main results and novelties, and connections

to the existing literature for the problems studied in that chapter. Chapter 5 concludes the

thesis and discusses some open questions.
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Chapter 2

Large Time Behaviour of Finite-State

Mean-Field Models

2.1 The setting and main results

2.1.1 The setting

Let there be N particles. Each particle has a state associated with it which comes from a finite

set Z; the state of the nth particle at time t is denoted by XN
n (t) ∈ Z. The empirical measure

of the system of particles at time t is defined by

µN(t) :=
1

N

N∑
n=1

δXN
n (t) ∈ M1(Z),

where δ· denotes the Dirac measure on Z. Here, M1(Z) denotes the space of probability

measures on Z equipped with a metric that generates the topology of weak convergence1 on

M1(Z). Each particle has a set of allowed transitions; to define this, let (Z, E) be a directed

graph with the interpretation that whenever (z, z′) ∈ E , a particle in state z is allowed to move

from z to z′. To specify the interaction among the particles and the evolution of the states of

the particles over time, for each (z, z′) ∈ E , we are given a function λz,z′ : M1(Z) → [0,∞).

We consider the generator ΨN acting on functions f on ZN by

1Since Z is a finite set, the total variation metric on M1(Z) generates this topology.
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ΨNf(zN) =
N∑

n=1

∑
z′n:(zn,z

′
n)∈E

λzn,z′n(z
N)(f(zNn,zn,z′n)− f(zN));

here zN = 1
N

∑N
n=1 δzn ∈ M1(Z) denotes the empirical measure associated with the configura-

tion zN ∈ ZN , and zNn,zn,z′n denotes the resultant configuration of the particles when the nth

particle changes its state from zn to z′n.

We make the following assumptions on the model:

(A1) The graph (Z, E) is irreducible.

(A2) The functions λz,z′(·), (z, z′) ∈ E , are Lipschitz continuous on M1(Z) and there exist

positive constants c, C such that c ≤ λz,z′(ξ) ≤ C for all (z, z′) ∈ E and all ξ ∈ M1(Z).

Let D([0,∞),ZN) denote the space of ZN -valued functions on [0,∞) that are right contin-

uous with left limits (càdlàg), equipped with the Skorohod-J1 topology (see [34, Chapter 3]).

Since the transition rates are bounded (by assumption (A2)), the D([0,∞),ZN)-valued mar-

tingale problem for ΨN is well posed (see [34, Exercise 15, Section 4.1]); therefore, given an

initial configuration of the particles (XN
n (0), 1 ≤ n ≤ N) ∈ ZN , we have a Markov process(

(XN
n (t), 1 ≤ n ≤ N), t ≥ 0

)
whose sample paths are elements of D([0,∞),ZN). To describe

the process in words, a particle in state z at time t moves to state z′ at rate λz,z′(µ
N(t)) inde-

pendent of everything else; i.e., the evolution of the state of a particle depends on the states

of the other particles via the empirical measure of the states of all the particles, hence the

name mean-field interaction. Note that the empirical measure process (µN(t), t ≥ 0) is also a

Markov process with state space MN
1 (Z) which is the set of elements of M1(Z) that can arise

as empirical measures of N -particle configurations on ZN . Its generator LN acting on functions

f on MN
1 (Z) is given by

LNf(ξ) = N
∑

(z,z′)∈E

ξ(z)λz,z′(ξ)

[
f

(
ξ +

δz′

N
− δz

N

)
− f(ξ)

]
.

Since µN is a Markov process on a finite state space, and since the graph (Z, E) of the allowed

particle transitions is irreducible (Assumption (A1)), there exists a unique invariant probability

measure for µN , which we denote by ℘N . Also, let Pν denote the law of (µN(t), t ≥ 0) with initial

condition µN(0) = ν ∈ MN
1 (Z) (i.e. the solution to the D([0,∞),M1(Z))-valued martingale

problem for LN with initial condition ν ∈ MN
1 (Z)) and let Eν denote integration with respect

to Pν ; in both Pν and Eν we suppress the dependence on N for ease of readability.
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2.1.2 Main results

Let us now discuss the main results of this chapter. All results of this chapter are established

under assumptions (A1) and (A2) on the particle system, and a further assumption (B1) on

the structure of the large time behaviour of the ODE (2.1) (see Section 2.3).

2.1.2.1 Convergence to the invariant measure

Our first main result is on the time required for the process µN to equilibrate. This time grows

at an exponential rate with the number of particles N where the rate is the constant Λ > 0

which will be defined in (2.9).

Theorem 2.1. Given δ > 0 there exist ε > 0 and N0 ≥ 1 such that, with T = exp{N(Λ + δ)},

sup
ν∈MN

1 (Z)

∣∣Eν(f(µ
N(T )))− ⟨f, ℘N⟩

∣∣ ≤ ∥f∥∞ exp{− exp(Nε)}

for all N ≥ N0 and all bounded Borel-measurable functions f on M1(Z).

The result says that when time is of the order exp{N(Λ + δ)} for any δ > 0, the process

has mixed well and it is close to its invariant measure. The proof of this result is based on the

study of the large time behaviour of the process µN . Before we describe this, let us mention a

well-known law of large numbers for the process µN [59, 39, 83, 6]. This will not only pave the

way for a suitable description of the constant Λ but also lead us to a converse of Theorem 2.1

and the significance of Λ.

Assume (A1) and (A2), and suppose that the initial conditions {µN(0), N ≥ 1} converge

weakly to a deterministic measure ν ∈ M1(Z) as N → ∞. Then for any fixed T > 0,

the empirical measure process {(µN(t), t ∈ [0, T ]), N ≥ 1} converges in D([0, T ],M1(Z)), in

probability, to the solution to the ODE

µ̇(t) = Λ∗
µ(t)µ(t), t ∈ [0, T ], µ(0) = ν, (2.1)

where, for any ξ ∈ M1(Z), Λξ denotes the |Z| × |Z| rate matrix1 when the empirical measure

is ξ, Λ∗
ξ denotes its transpose, D([0, T ],M1(Z)) denotes the space of M1(Z)-valued càdlàg

functions on [0, T ] equipped with the Skorohod-J1 topology (we assume that all paths are left

continuous at T ), and both µ(t) and µ̇(t) are viewed as column vectors. The above ODE is

1The rate matrix is given by Λξ(z, z
′) = λz,z′(ξ) when (z, z′) ∈ E , Λξ(z, z

′) = 0 when (z, z′) /∈ E , and
Λξ(z, z) = −

∑
z′ ̸=z λz,z′(ξ) for all z ∈ Z.
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referred to as the McKean-Vlasov equation. The above convergence result enables one to view

the process µN as a small random perturbation of the ODE (2.1).

We now elaborate on the large time behaviour of µN . Suppose that the limiting McKean-

Vlasov equation (2.1) has multiple ω-limit sets (multiple stable equilibria and/or limit cycles).

If we focus on a fixed time interval [0, T ], let the number of particles N → ∞, and let the initial

conditions µN(0) converge weakly to a deterministic limit ν, then the mean-field convergence

suggests that the empirical measure process tracks the solution to the McKean-Vlasov equa-

tion (2.1) over [0, T ] starting at ν. If we then let T → ∞, the solution to the McKean-Vlasov

equation goes to an ω-limit set of (2.1) depending on the initial condition ν. On the other

hand, for a large but fixed N , the process would track the McKean-Vlasov equation with high

probability and, as time becomes large, would thus enter a neighbourhood of the ω-limit set

corresponding to the initial condition ν; however, because of the randomness in the finite-N

system, the process can exit the basin of attraction of this ω-limit set. It is then likely to

remain in a neighbourhood of another ω-limit set for a large amount of time before transiting

to the next one, and so on. These are examples of metastable phenomena, and it turns out that

the sojourn times in the basin of attraction of an ω-limit set are of the order exp{O(N)}, as
we shall soon see. The proof of Theorem 2.1 exploits quantitative estimates of the following

metastable phenomena,

(i) the mean time spent by the process near an ω-limit set,

(ii) the probability of first reaching a particular ω-limit set’s neighbourhood before reaching

the neighbourhood of another one, and

(iii) the probability of traversing the neighbourhoods of a given set of ω-limit sets in a partic-

ular order.

These quantifications are important in their own right as they help predict the performance of

engineered systems, some of which are described in Section 1.1. We study the aforementioned

metastability questions in Section 2.3. Such large time phenomena for diffusion processes with

a small noise parameter have been studied in the past by Freidlin and Wentzell [37] under the

“general position condition” (see [37, Sections 6.4-6.6]). Hwang and Sheu [44] studied the large

time behaviour for diffusion processes under a more general setup. The key in both these works

is the large deviation properties of the small noise diffusion processes over finite time durations,

which have been established in [37, Chapter 5]. In this chapter, we extend the analysis to

Markov mean-field jump processes, specifically {µN(·), N ≥ 1}.
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The proof of Theorem 2.1 is carried out using lower bounds (Theorem 2.8) for the probability

that, starting from any point in MN
1 (Z), the process µN is in a small neighbourhood of one of

the most stable1 ω-limit set(s) of the McKean-Vlasov equation (2.1) when time is of the order

exp{N(Λ−δ0)}, for a small δ0 > 0. The constant Λ is defined using “costs of passages” between

the ω-limit sets of the McKean-Vlasov equation (2.1). These costs are quantified in terms of

the large deviations rate function associated with the process µN via certain graphs called W -

graphs (see Section 2.3.2 for the definition of W -graphs). In particular, Λ is positive when the

limiting dynamics (2.1) has multiple stable ω-limit sets. See (2.9) for a precise definition of Λ.

Our next result is, in a certain sense, a converse of Theorem 2.1. Let i0 be one of the most

stable ω-limit set(s) of (2.1).

Theorem 2.2. There exist ν0 ∈ M1(Z), δ > 0, β > 0, ρ1 > 0 and N0 ≥ 1 such that, with

T = exp{N(Λ− δ)},

Pν(µ
N(T ) ∈ (the ρ1 neighbourhood of i0)) ≤ exp{−Nβ}.

for all ν in the ρ1-neighbourhood of ν0 in MN
1 (Z) and N ≥ N0.

In other words, when time is of the order exp{N(Λ − δ)}, there are initial conditions ν ∈
MN

1 (Z) such that the probability that µN(exp{N(Λ− δ)}) is in a small neighbourhood of one

of the most stable ω-limit set(s) is exponentially small. The process is then not likely to have

equilibrated because it has not visited a set with high invariant measure. Thus, Theorem 2.1

and Theorem 2.2 together indicate that the constant Λ is sharp (in the exponential scale) for

the time required for equilibration of µN(·).
A convergence result similar to that of Theorem 2.1 for the mean-field discrete-time setting

but without the specification of the constant Λ was established by Panageas and Vishnoi [68].

Let us reemphasise that our setting is a continuous-time setting. To identify the constant Λ

in this setting, we must study the large deviation asymptotics in greater detail. Theorems 2.1

and 2.2 combine time and the number of particles. Additionally, Theorem 2.1 is a statement

that holds uniformly over all initial conditions unlike the convergence bounds (over time) for

a fixed number of particles with a given initial condition, e.g. [84]. The proof of Theorem 2.1

is inspired by that of Hwang and Sheu’s [44, Theorem 2.1, Part I] where similar results are

established for small noise diffusions.

1See Section 2.3.5 for a precise definition.
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2.1.2.2 Asymptotics of the second largest eigenvalue

Our second main result is on the asymptotics of the second largest eigenvalue of the generator

LN of the Markov process µN when it is reversible with respect to its invariant measure ℘N .

That is, the operator LN is self-adjoint in L2(℘N) and it admits a spectral expansion; let

0 = λN
1 > −λN

2 ≥ −λN
3 ≥ · · · denote its eigenvalues in the decreasing order. See Example 2.2

for the description of a reversible system that arises in statistical physics. For a fixed N , the

convergence speed of the process µN to its invariant measure (over time) can be understood by

studying the modulus of the second largest eigenvalue of LN (i.e. λN
2 ). Using the results on

the large time behaviour of µN and the convergence result in Theorem 2.1, we show that the

modulus of the second largest eigenvalue of LN scales as exp{−NΛ}; here Λ (defined in (2.9))

is the constant that appears in the statement of Theorem 2.1. More precisely,

Theorem 2.3. Assume that LN is reversible with respect to ℘N for each N ≥ 1. Then,

lim
N→∞

1

N
log λN

2 = −Λ.

It turns out that Λ can be positive only when there are metastable states in the limiting

dynamics (2.1) (i.e. when (2.1) possesses multiple ω-limit sets). In such situations, one expects

slower convergence to the invariant measure for large values of N . On the other hand, Λ can be

0, for example, when the limiting dynamics (2.1) has a unique globally asymptotically stable

equilibrium; in this special case, convergence of µN to its invariant measure does not suffer from

the slowing down phenomenon associated with positive Λ. In fact, Panageas and Vishnoi [68]

and Panageas et al. [69] show that the mixing time is O(logN) in the discrete-time setting.

Kifer [49] considers a more restrictive discrete-time model, which does not cover the mean-field

model, and identifies the constant analogous to Λ [49, Theorem 4.3]. The restriction is that

the state space of µN is the same for each N and that a certain uniform finite duration large

deviation principle should hold with the rate function satisfying a continuity property. One can

view our result as an extension of Kifer’s [49, Theorem 4.3] to the continuous-time mean-field

setting, where the state space of the Markov process µN changes with N . Hwang and Sheu [44]

establish a result similar to ours on the scaling of the second largest eigenvalue of a reversible

small noise diffusion process, and our method of proof is inspired by their approach.

2.1.2.3 Convergence to a global minimum via controlled addition of particles

Our third main result is on the convergence of the empirical measure process to a global

minimum of a natural ‘entropy’ function when particles are injected over time at a specific
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rate reminiscent of the simulated annealing algorithm’s cooling schedule, N(t) = ⌊ log(2+t)
c∗+δ

⌋ for a
suitable c∗ and any δ > 0. This entropy function is the large deviations rate function associated

with the sequence of invariant measures {℘N , N ≥ 1}, which is in turn defined in terms of the

large deviations rate function associated with the process µN ; see (2.8) for its definition.

Fix c > 0. Let N0 = min{n ∈ N : exp{nc} − 2 ≥ 0}, tN0 = 0, and for each N > N0, let

tN = exp{Nc}− 2. We construct a process with controlled addition of particles as follows. We

start with N0 particles with certain initial states and let the process evolve according to the

generator LN0 until time tN0+1. For each N > N0, we add an extra particle at time tN , and

for a fixed state z0 ∈ Z, we set the state of the new particle to z0 and let the process evolve

according to the generator LN from tN to tN+1 (see a more precise description of the process in

Section 2.5). Let µ̄ denote the above time-inhomogeneous Markov process and let P0,ν denote

the law of µ̄ on D([0,∞),M1(Z)) with initial condition µ̄(0) = ν. Also, let L denote the set

of all ω-limit sets of the McKean-Vlasov equation (see Section 2.3.1 for its precise definition)

and let L̃0 denote the set of all global minima of the entropy function (see Section 2.3.5.1 for

the precise definition of L̃0). Our convergence result is the following.

Theorem 2.4. Assume that L̃0 ̸= L. There exists a constant c∗ > 0 such that for all c > c∗

and any ρ1 > 0,

P0,ν(µ̄(t) ∈ (the ρ1-neighbourhood of L̃0)) → 1

as t → ∞, uniformly for all ν ∈ MN0
1 (Z).

Note that the convergence to a global minimum holds for all starting points. This is of use

in situations where a population growth schedule is applied in order to engineer the mean-field

system’s movement to a desired equilibrium point, as time t → ∞. One can also use this

approach to study numerically the most likely region in which the process µN spends time

for large values of N , under stationarity. Again, our proof is inspired by the analysis of the

simulated annealing algorithm in [44, Part III]. We can also choose the transition rates of the

particles so as to minimise a given “nice” function on M1(Z), see Example 2.3.

2.1.3 Key ingredients for the proofs

The proofs of our main results follow the outlines in [44]. However, in order to make them work

in our present context (which involves jump Markov processes and the mean-field setting), we

need to establish the following properties:
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• a uniform version of the finite-duration large deviation principle for {(µN(t), t ∈ [0, T ]), N ≥
1}, where the uniformity is over the initial condition;

• continuity of the cost function associated with movement between points on the simplex

M1(Z);

• strong Markov property of µN(·).

The key insight from this chapter is the abstraction of these three properties and their im-

portance in establishing the large time behaviour and metastability properties of mean-field

systems. We leverage the results of [15] to establish the above properties.

We now describe the key ideas in the proofs of the main results of this chapter.

To prove Theorem 2.1, one possible approach is to wait long enough for the process µN to

hit a neighbourhood of one of the most stable ω-limit set(s) of (2.1), regardless of the initial

condition, and then allow sufficient additional time for the process to mix well. We prove Theo-

rem 2.1 using this idea; we first consider a sequence of passages of µN between neighbourhoods

of ω-limit sets of (2.1) to reach one of the most stable ω-limit set. Each of these passages

take place between “stable” subsets of ω-limit sets called cycles (see Section 2.3.3). Probability

of each of these passages over time intervals of the form exp{N × constant} for appropriate

constants can be lower bounded, thanks to the uniform large deviation property of µN (see The-

orem 2.8). We then tie them up using the strong Markov property of µN . These steps yield a

lower bound on the transition probability for µN (see Corollary 2.5) and Theorem 2.1 follows

as a consequence of this. We can also produce an upper bound for probability of these pas-

sages for suitable initial conditions if enough time has not lapsed (see (2.11) in Theorem 2.8).

Theorem 2.2 follows as a consequence of this upper bound.

Theorem 2.3 follows from an application of Theorem 2.1. We use the spectral expansion

of the generator of µN , when it is reversible with respect to its invariant measure ℘N , and the

large deviation principle for {℘N , N ≥ 1} to prove Theorem 2.3.

In Theorem 2.4, to bring the process µN to one of the most stable ω-limit set(s) of (2.1)

(i.e., one of the global minima of our entropy function), regardless of the initial condition, we

introduce new particles over time in a controlled fashion. Before reaching a global minimum,

the system may possibly explore other local minima. Since addition of the particles amounts to

reduction of the “noise” in the process µN , we must make sure that the particles are introduced

sufficiently slowly over time so that the system does not get trapped in a local minimum. This

is achieved by the choice of our particle addition schedule N(t), t ≥ 0, which is the analogue of

the cooling schedule in simulated annealing. The schedule also enables us to apply the uniform
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large deviation principle over sufficiently long time durations to µ̄ so as to extend the results

on the large time behaviour used in the proof of Theorem 2.1 to the present situation when

the number of particles change over time (see Lemma 2.12–2.14). These extensions along with

the method to analyse the passages of the system through cycles, the idea used in the proof of

Theorem 2.1, enables us to prove a 1 − o(1) lower bound on the probability that µ̄(t) belongs

to a neighbourhood of a global minimum of our entropy function as t → ∞, no matter where

we start the process.

2.2 Preliminaries: Large deviations over finite time du-

rations

In this section, we present a large deviation principle for the process µN over finite time dura-

tions. This result will be used later to study the large time behaviour of µN and the rate of

convergence of µN to its invariant measure.

Fix T > 0. We introduce some notations. Let p
(N)

νN ,[0,T ]
denote the solution to theD([0, T ],M1(Z))-

valued martingale problem for LN , i.e., the law of the empirical measure process (µN(t), t ∈
[0, T ]), and let p

(N)

νN ,T
denote the law of the terminal-time empirical measure µN(T ) ∈ M1(Z),

with a deterministic initial condition µN(0) = νN . Let AC[0, T ] denote the space of absolutely

continuous M1(Z)-valued paths on [0, T ] (in particular they are differentiable for almost all

t ∈ [0, T ]; see [55, Definition 3.1]). Define

τ ∗(u) :=


∞ if u < −1

1 if u = −1

(u+ 1) log(u+ 1)− u if u > −1,

which is the Fenchel-Legendre transform of τ(u) = eu − u − 1, u ∈ R. Recall the definition of

the family of rate matrices (Λξ, ξ ∈ M1(Z)) from Section 2.1.2. We have the following large

deviation principle (LDP) for the sequence {p(N)

νN ,[0,T ]
, N ≥ 1} on D([0, T ],M1(Z)) (see [55,

Theorem 3.1], [15, Theorem 3.2]).

Theorem 2.5. Suppose that the initial conditions νN → ν in M1(Z) as N → ∞. Then the

sequence of probability measures {p(N)

νN ,[0,T ]
, N ≥ 1} on the space D([0, T ],M1(Z)) satisfies the

LDP with rate function S[0,T ](·|ν) defined as follows. If µ(0) = ν and µ ∈ AC[0, T ], then

S[0,T ](µ|ν) =
∫
[0,T ]

sup
α∈RZ

{∑
z∈Z

α(z)(µ̇t(z)− Λ∗
µt
µt(z))
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−
∑

(z,z′)∈E

τ(α(z′)− α(z))λz,z′(µt)µt(z)

}
dt,

and S[0,T ](µ|ν) = +∞ otherwise. Moreover, if S[0,T ](µ|ν) < ∞, then there exists a unique family

of rate matrices L(t) = (lz,z′(t), z, z
′ ∈ Z), t ∈ [0, T ], such that t 7→ L(t) is measurable, µ is the

solution to

µ̇(t) = L(t)∗µ(t), t ∈ [0, T ], µ(0) = ν,

and

S[0,T ](µ|ν) =
∫
[0,T ]

∑
(z,z′)∈E

µ(t)(z)λz,z′(µ(t))τ
∗
(

lz,z′(t)

λz,z′(µ(t))
− 1

)
dt,

where L(t)∗ denotes the transpose of L(t), t ∈ [0, T ].

We can interpret the rate function S[0,T ] as follows. Starting at νN , the process µN is likely

to be in the neighbourhood of the solution to the McKean-Vlasov equation (2.1) with initial

condition ν (with high probability). In order for the process µN to be in the neighbourhood

of some other path, we need to apply a control given by the rate matrix L; S[0,T ](µ|ν) is the

cost of this control. In particular, since the solution to the McKean-Vlasov equation starting

at ν has zero-cost (i.e. S[0,T ](µν |ν) = 0 where µν denotes the solution to (2.1) starting at ν),

the limiting behaviour that µN(·) P−→ µν(·) in D([0, T ],M1(Z)) as N → ∞ follows. See [30] for

some remarks about the form of the rate function and for another representation of the rate

function in terms of a relative entropy.

Here is an outline of the proof of Theorem 2.5: one looks at a system of non-interacting

particles where the transition rates of a particle do not depend on the empirical measure, and

considers the corresponding empirical measure process over [0, T ]. Since at most one particle can

jump at a given point of time, the measure p
(N)

νN ,[0,T ]
is absolutely continuous with respect to the

measure corresponding to the above non-interacting system on D([0, T ],M1(Z)). One can then

write the Radon-Nikodym derivative using the Girsanov formula and show continuity properties

of the same. An application of an extension of Sanov’s theorem (see [26, Theorem 3.5]) tells

us that the non-interacting particle system obeys the LDP on D([0, T ],M1(Z)). The above

theorem then follows by an application of Varadhan’s integral lemma (see [29, Theorem 4.3.1]).

This approach has been carried out for a system of interacting diffusions in [26] and for jump

processes in [55, 15]. One can also prove various special cases of Theorem 2.5 via other simpler

methods; for example, for fixed initial conditions, i.e., when νN = δz for some z ∈ Z and for
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all N ≥ 1, one can use a modification of Varadhan’s lemma to obtain the LDP for p
(N)
δz ,[0,T ]

(see [27]), but letting the initial condition to be arbitrary, except for the constraint νN → ν

weakly, is crucial to obtain a uniform version of the Theorem 2.5 (see Corollary 2.1), which is

used to prove our main results.

We now recall a theorem that gives the large deviation principle for the sequence {p(N)

νN ,T
, N ≥

1} on M1(Z). This can be obtained from the above theorem by an application of the con-

traction principle to the coordinate projection map D([0, T ],M1(Z)) ∋ µ 7→ µ(T ) (see [29,

Theorem 4.2.1], [15, Theorem 3.3]).

Theorem 2.6. Suppose that the initial conditions νN → ν in M1(Z) as N → ∞. Then the

sequence of probability measures {p(N)

νN ,T
, N ≥ 1} on the space M1(Z) satisfies the LDP with the

rate function

ST (ξ|ν) := inf{S[0,T ](µ|ν) :µ(0) = ν, µ(T ) = ξ, µ ∈ AC[0, T ]}.

Moreover, the above infimum is attained, i.e., there exists a path µ̂ ∈ AC[0, T ] such that µ̂(0) =

ν, µ̂(T ) = ξ and S[0,T ](µ̂|ν) = ST (ξ|ν).

Here, ST (ξ|ν) can be interpreted as the minimum cost of passage from the profile ν to the

profile ξ in time T , among all paths from ν to ξ in time T . It can be shown that ST is continuous

on M1(Z)×M1(Z) by constructing piecewise constant velocity trajectories between points on

M1(Z) (see [15, Lemma 3.3]).

We also have the following uniform LDP for the sequence {p(N)

νN ,[0,T ]
, N ≥ 1} (see [15, Corol-

lary 3.1]) when the initial condition is allowed to lie in a compact set.

Corollary 2.1. For any compact set K ⊂ M1(Z), any closed set F ⊂ D([0, T ],M1(Z)), and

any open set G ⊂ D([0, T ],M1(Z)), we have

lim sup
N→∞

1

N
log sup

νN∈K∩MN
1 (Z)

p
(N)

νN ,[0,T ]
(µN ∈ F ) ≤ − inf

ν∈K
inf
µ∈F

S[0,T ](µ|ν), (2.2)

and

lim inf
N→∞

1

N
log inf

νN∈K∩MN
1 (Z)

p
(N)

νN ,[0,T ]
(µN ∈ G) ≥ − sup

ν∈K
inf
µ∈G

S[0,T ](µ|ν). (2.3)

For a proof of the above, see [29, Corollary 5.6.15]. Note that, since the space M1(Z) is

compact, we may take K = M1(Z) in the above corollary.
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Remark 2.1. The version of uniform LDP presented in Corollary 2.1 is slightly different from

the definition of uniform LDP in Freidlin and Wentzell [37, Section 3, Chapter 3]. The version

presented here suffices for the proofs of our main results since our state spaceM1(Z) is compact

and the rate function ST defined in Theorem 2.6 is continuous (see [77, Theorem 2.7] and [15,

Appendix A]).

2.3 Large time behaviour

In the study of the large time behaviour of µN , an important role is played by the Freidlin-

Wentzell quasipotential V : M1(Z)×M1(Z) → [0,∞) defined by

V (ν, ξ) := inf{S[0,T ](µ|ν) : µ(T ) = ξ, T > 0},

i.e., V (ν, ξ) denotes the minimum cost of transport from ν to ξ in an arbitrary but finite time.

We say that ν ∼ ξ (ν is equivalent to ξ) if V (ν, ξ) = 0 and V (ξ, ν) = 0. It is easy to see

that ∼ defines an equivalence relation on M1(Z). To study the large time behaviour of the

process µN , we make the following assumptions on the McKean-Vlasov equation (2.1) (see [37,

Chapter 6, Section 2, Condition A]):

(B1) There exists a finite number of compact sets K1, K2, . . . , Kl such that

• For each i = 1, 2, . . . l, ν1, ν2 ∈ Ki implies ν1 ∼ ν2.

• For each i ̸= j, ν1 ∈ Ki and ν2 ∈ Kj implies ν1 ≁ ν2.

• Every ω-limit set of the dynamical system (2.1) lies completely in one of the compact

sets Ki.

Since V (ν1, ν2) = 0 whenever ν1, ν2 ∈ Ki for any 1 ≤ i ≤ l, we can define

V (Ki, Kj) := inf{S[0,T ](µ|ν) : ν ∈ Ki, µ(T ) ∈ Kj, T > 0},

which is interpreted as the minimum cost of going from Ki to Kj. We also define the minimum

cost of going from Ki to Kj without touching the other compact sets Kk, k ̸= i, j by

Ṽ (Ki, Kj) := inf{S[0,T ](µ|ν) : ν ∈ Ki, µ(t) /∈ ∪k ̸=i,jKk for all t ∈ [0, T ], µ(T ) ∈ Kj, T > 0}.
(2.4)
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Using the definition of the rate function ST , note that

V (ν, ξ) = inf
T>0

ST (ξ|ν) and V (Ki, Kj) = inf
ν∈Ki,ξ∈Kj

V (ν, ξ).

Example 2.1. We provide two example where (B1) is satisfied.

1. (Wireless local area network). Let Z = {0, 1}. The edgeset E consists of the edges (0, 1)

and (1, 0). Define the transition rates

λz,z′(ξ) =

{
c0(1− exp{−(c0ξ(0) + c1ξ(1))}) if z = 0, z′ = 1,

c1 if z = 1, z′ = 0,

where c0, c1 > 0. The limiting dynamics (2.1) is a one-dimensional ODE and it is given

by

µ̇t(0) = −c0µt(0)(1− exp{−(c0µt(0) + c1(1− µt(0)))}) + c1(1− µt(0)), t ≥ 0.

Let f(x) = −c0x(1− exp{−(c0x+ c1(1− x))}) + c1(1− x), x ∈ [0, 1]. Note that f(0) > 0

and f(1) < 0. It is easy to check that, if c0 > c1, then f ′(x) < 0 for all x ∈ (0, 1). As

a consequence, there exists a unique ξ∗ ∈ M1(Z) such that all trajectories of the above

dynamical system converge to ξ∗(0). Thus, assumption (B1) holds with l = 1, K1 = {ξ∗}.

2. (Dynamic alternate routing in loss networks). Fix C ∈ Z+ and let Z = {0, 1, . . . , C}.
The edgeset E consists of the forward edges {(z, z+1), 0 ≤ z ≤ C − 1} and the backward

edges {(z, z − 1), 1 ≤ z ≤ C}. For (z, z′) ∈ E and ξ ∈ M1(Z), define the transition rates

λz,z′(ξ) =

{
z if z ̸= 0, z′ = z − 1,

α + αξ(C)× 2(1− ξ(C)) if z ̸= C, z′ = z + 1,

where α > 0. This model arises in the context of dynamic alternate routing in loss

networks. For certain values of α, the limiting ODE (2.1) possesses two stable equilibria

(say ξ∗1 and ξ∗2) and an unstable equilibrium (say ξ∗3) [40, 66]. Thus, assumption (B1) is

satisfied with l = 3, Ki = {ξ∗i }, i = 1, 2, 3.

For a model of malware propagation where a limit cycle and an unstable equilibrium arise,

see Benäım and Le Boudec [6, Section 4.1].
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2.3.1 Preliminary results

It turns out that, under assumption (B1), the large time behaviour of the process µN can be

studied via a discrete time Markov chain whose state space is the union of small neighbourhoods

of the compact sets Ki, 1 ≤ i ≤ l. To study this chain, we introduce some notation. Let

L = {1, 2, . . . , l}. Given 0 < ρ1 < ρ0, let γi (resp. Γi) denote the ρ1-open neighbourhood

(resp. ρ0-open neighbourhood) of Ki. Let γ = ∪l
i=1γi, Γ = ∪l

i=1Γi, and C = M1(Z) \ Γ. For

a set A ⊂ M1(Z) and δ > 0, let [A]δ denote the δ-open neighbourhood of A, and for a subset

W ⊂ L, abusing notation, let [W ]δ denote the δ-open neighbourhood of ∪i∈WKi. For each

n ≥ 1, we define the sequence of stopping times: τ0 := 0, σn := inf{t > τn−1 : µN(t) ∈ C},
τn := inf{t > σn : µN(t) ∈ γ}, and define ZN

n := µN(τn). Since µN is strong Markov, ZN

is a discrete time Markov chain, and ZN
n ∈ γ ∩ MN

1 (Z) for all n ≥ 1. For a measurable set

A ∈ M1(Z), we define the stopping time τA := inf{t > 0 : µN(t) /∈ A}, which denotes the

time of first exit from the set A. Finally, for a subset W ⊂ L, we define the stopping time

τ̂W := inf{t > 0 : µN(t) ∈ ∪i∈Wγi}, and τ̄W := inf{t > 0 : µN(t) ∈ ∪i∈L\Wγi}, which denote the

time of entry into the ρ1-neighbourhood of W and the time of entry into the ρ1-neighbourhood

of L \W , respectively.

We now state some results on the behaviour of the exit time from certain sets, which will

be used in this chapter subsequently. These results are known in the case of both Markov jump

processes as well as diffusion processes; see [15, Appendix], and [37, Chapter 6, Section 2]. The

main ingredients that are used in proving these results are (i) the strong Markov property of

the µN process, (ii) Theorem 2.5 and Corollary 2.1 on the LDP for finite time durations, and

(iii) the joint continuity of the terminal time rate function ST (·|·) (see [15, Lemma 3.3]). Recall

that Pν denotes the law of (µN(t), t ≥ 0) with initial condition µN(0) = ν and Eν denotes the

corresponding expectation.

Lemma 2.1 ([15, Lemma A.3]). Let K ⊂ M1(Z) be a compact set such that all points in K

are equivalent to each other (i.e., ν1 ∼ ν2 for all ν1, ν2 ∈ K), and K ̸= M1(Z). Then, given

ε > 0, there exist δ > 0 and N0 ≥ 1 such that for all N ≥ N0 and ν ∈ [K]δ ∩MN
1 (Z),

Eντ[K]δ ≤ exp{Nε}.

Lemma 2.2 ([15, Lemma A.4]). Let K ⊂ M1(Z) be a compact set and G be a neighbourhood

of K. Then, given ε > 0, there exist δ > 0 and N0 ≥ 1 such that for all ν ∈ [K]δ ∩ MN
1 (Z)
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and N ≥ N0

Eν

(∫ τG

0

1{µN (t)∈[K]δ}dt

)
≥ exp{−Nε}.

Lemma 2.3 ([15, Lemma A.5]). Let K ⊂ M1(Z) be a compact set that does not contain any

ω-limit set of (2.1) entirely. Then, there exist positive constants c, T0, and N0 ≥ 1 such that

for all T ≥ T0, N ≥ N0, and ν ∈ K ∩MN
1 (Z), we have

Pν(τK ≥ T ) ≤ exp{−Nc(T − T0)}.

Corollary 2.2. Under the conditions of Lemma 2.3, there exist C > 0 and N0 ≥ 1 such that

for all ν ∈ K ∩MN
1 (Z) and N ≥ N0,

EντK ≤ C.

Recall the definition of the discrete time Markov chain ZN on γ∩MN
1 (Z). The next lemma

gives upper and lower bounds on the one-step transition probabilities of the chain ZN . These

estimates play an important role in the study of the large time behaviour of the process µN , as

we shall see in the sequel.

Lemma 2.4 ([15, Lemma A.6]). Given ε > 0, there exist ρ0 > 0 and N0 ≥ 1 such that, for any

ρ2 < ρ0, there exists ρ1 < ρ2 such that for any ν ∈ [Ki]ρ2 ∩MN
1 (Z) and N ≥ N0, the one-step

transition probability of the chain ZN satisfies

exp{−N(Ṽ (Ki, Kj) + ε)} ≤ P (ν, γj) ≤ exp{−N(Ṽ (Ki, Kj)− ε)}. (2.5)

Remark 2.2. In the above statement, P (ν, γj) is defined as P (ν, γj) := Pν(Z
N
1 ∈ γj) =

Pν(µ
N(τ1) ∈ γj).

The key ingredient in the proof of the above lemma is Corollary 2.1 on the uniform large

deviation principle on bounded sets. For the lower bound, one constructs a specific trajectory

from ν to Kj and examines its cost. For the upper bound, one uses the strong Markov property

at the hitting time of [L]ρ1 and the uniform large deviation principle. For details, the reader is
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referred to the proof of [15, Lemma A.6] for the case of Markov jump processes, and the proof

of [37, Lemma 2.1, page 152] for the case of small noise diffusions.

2.3.2 Behaviour near attractors indexed by subsets of L

We now recall some results on the behaviour of the process µN near a small neighbourhood of

attractors indexed by a given subset of L. Let W ⊂ L, W ̸= ∅. A W -graph is a directed graph

on L such that (i) each element of L \W has exactly one outgoing arrow and (ii) there are no

closed cycles in the graph. We denote the set of W -graphs by G(W ). For each i ∈ L, we denote

G({i}) by G(i). For a W -graph g, define

Ṽ (g) =
∑

(m→n)∈g

Ṽ (Km, Kn). (2.6)

If g does not have any edge (e.g., when L is a singleton), we use the convention Ṽ (g) = 0. Note

that, using the estimate (2.5), Ṽ can be used to estimate the probability that the process µN

traverses through a sequence of neighbourhoods in the order specified by the graph g.

For i ∈ L \ W and j ∈ W , let Gi,j(W ) denote the set of W -graphs in which there is a

sequence of arrows leading from i to j. Define

Ii,j(W ) := min{Ṽ (g) : g ∈ Gi,j(W )} −min{Ṽ (g) : g ∈ G(W )}.

We recall the following result on the probability that the first entry of µN into a neighbourhood

of a set W ⊂ L takes place via a given compact set Kj, starting from a neighbourhood of Ki.

Lemma 2.5. Let W ⊂ L, and let i ∈ L \W and j ∈ W . Given ε > 0, there exist ρ > 0 and

N0 ≥ 1 such that for any ρ1 ≤ ρ, ν ∈ γi ∩MN
1 (Z), and N ≥ N0, we have

exp{−N(Ii,j(W ) + ε)} ≤ Pν(µ
N(τ̂W ) ∈ γj) ≤ exp{−N(Ii,j(W )− ε)}.

Proof. The proof of [37, Lemma 3.3, page 159] holds verbatim, by making use of the estimates

in Lemma 2.4.

Remark 2.3. While the above lemma provides an estimate of the probability Pν(µ
N(τ̂W ) ∈ γj),

it does not provide any information about the sequence of states in L visited by the process µN

while traversing from i to j. The latter can be understood via studying the minimisations in

the definition of Ii,j, see [38].
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Our next step is to understand the mean entry time Eν τ̂W . For this, we need the following

estimate on the stopping time τ1; see [44, Lemma 1.3, Part I] for a similar estimate for small

noise diffusion processes.

Lemma 2.6. Given ε > 0, there exist ρ1 > 0 and N0 ≥ 1 such that, for any ν ∈ γ ∩MN
1 (Z)

and N ≥ N0, we have

Eντ1 ≤ exp{Nε}.

Proof. With a sufficiently small ρ1 > 0 to be chosen later, let ρ0 = 2ρ1 so that [Ki]ρ0 does not

intersect with [Kj]ρ0 for all j ̸= i. Note that, for any ν ∈ γ,

Eντ1 = Eνσ1 + Eν(τ1 − σ1).

Consider the first term. By Lemma 2.1, there exist ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ,

ν ∈ γ ∩MN
1 (Z) and N ≥ N0, we have

Eνσ1 ≤ exp{Nε/2}.

Let F = M1(Z) \ γ. By the strong Markov property, the second term is

Eν(τ1 − σ1) = EµN (σ1)(τF ).

Therefore, it suffices to estimate Eν′τF for ν ′ ∈ F . Since the compact set F does not contain

any ω-limit set, by Corollary 2.2, there exist a constant C > 0 and N1 ≥ N0 such that for any

ν ′ ∈ F ∩MN
1 (Z)

Eν′τF ≤ C.

This completes the proof of the lemma.

Define

Ii(W ) :=min{Ṽ (g) : g ∈ G(W )}

−min{Ṽ (g) : g ∈ G(W ∪ {i}) or g ∈ Gi,j(W ∪ {j}), i ̸= j, j ∈ L \W}.
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The next lemma is about the mean entry time into a neighbourhood of a given set W ⊂ L

starting from a neighbourhood of Ki; see [44, Lemma 1.6, Part I] for a similar estimate on small

noise diffusion processes.

Lemma 2.7. Let W ⊂ L, and let i ∈ L \W . Given ε > 0, there exist ρ > 0 and N0 ≥ 1 such

that for any ρ1 ≤ ρ, ν ∈ γi ∩MN
1 (Z), and N ≥ N0, we have

exp{N(Ii(W )− ε)} ≤ Eν τ̂W ≤ exp{N(Ii(W ) + ε)}.

Proof. We first prove the upper bound. Note that, by the strong Markov property, we have

Eν τ̂W = Eντv ≤
∞∑

m=1

Eν

(
1{v=m} ×m sup

ν′∈γ
Eν′τ1

)
,

where v is the hitting time of the chain ZN
n on the set W . Using Lemma 2.6 and the upper

bound on Eνv derived in [37, Lemma 3.4, page 162], for sufficiently small ρ1 and sufficiently

large N , we have that

Eν τ̂W ≤ exp{N(Ii(W ) + ε)}

holds for all ν ∈ γi ∩MN
1 (Z). For the lower bound, Lemma 2.2 implies that, for all sufficiently

small ρ1 and sufficiently large N , we have that

Eντ1 ≥ exp{−Nε}

holds for all ν ∈ γ. Also,

Eν τ̂W = Eντv ≥
∞∑

m=1

Eν

(
1{v=m} ×m inf

ν′∈γ
Eν′τ1

)
,

hence, using the lower bound on Eνv derived in [37, Lemma 3.4, page 162], we get

Eν τ̂W ≥ exp{N(Ii(W )− ε)}

for all ν ∈ γi ∩MN
1 (Z) and sufficiency large N .
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2.3.3 Cycles

We now define the notion of cycles, which helps us to describe the most probable way in which

the process µN , for large N , traverses neighbourhoods of various compact sets Ki, and the

time required to go from one to another. Recall the definition of Ṽ from (2.4). We interpret

Ṽ (Ki, Kj) as the “communication cost” from i to j. Define Ṽ (Ki) := minj ̸=i Ṽ (Ki, Kj). We say

that i → j if Ṽ (Ki) = Ṽ (Ki, Kj). For j ̸= i, the probability that µN hits a small neighbourhood

of Kj upon exit from a small neighbourhood of Ki is of the form exp{−N(Ṽ (Ki, Kj)− Ṽ (Ki))},
and the mean exit time from a small neighbourhood of Ki is of the form exp{NṼ (Ki)} [37,

Chapter 6, Section 5]. In particular, the indices that attain the minimum above are the most

likely sets that will be visited by the process µN , for large enough N , starting from a neighbour-

hood of Ki. For i, j ∈ L, we say that i ⇒ j if there exists a sequence of arrows leading from

i to j, i.e., there exists i1, i2, . . . , in in L such that i → i1 → i2 → · · · → in → j. Again, the

above sequence of arrows from i to j is one among the locally most likely sequences in which

the process traverses from a neighbourhood of Ki to that of Kj for large N .

Definition 2.1. A 1-cycle π is a directed graph on a subset of elements of L satisfying

1. i ∈ π and i ⇒ j implies j ∈ π.

2. For any i ̸= j in π, we have i ⇒ j and j ⇒ i.

That is, a 1-cycle is a subset of the elements of L along with a certain assignment of arrows

among them according to the numbers Ṽ (·, ·). For example, if L = {1, 2, 3}, 1 → 2, 2 → 1,

and 3 → 1 are the only possible arrows (i.e., Ṽ (K1) = Ṽ (K1, K2) < Ṽ (K1, K3), Ṽ (K2) =

Ṽ (K2, K1) < Ṽ (K2, K3), and Ṽ (K3) = Ṽ (K3, K1) < Ṽ (K3, K2)), then the graph on {1, 2}
consisting of the arrows 1 → 2 and 2 → 1 is a 1-cycle. The set {3} is not part of a 1-cycle. It

can be shown that there exists a 1-cycle (see the proof of [44, Lemma 1.9, Part I]).

We now define cycle of 1-cycles. Let L0 = L. Define

L1 := {π : π is a cycle in L} ∪ {i ∈ L : i is not in any cycle}.

That is, the elements of L1 are either 1-cycles in L or elements of L that do not belong to

any 1-cycle. In the previous example, L1 is the set {{1, 2}} ∪ {{3}}. Ultimately, we view the

elements of L1 as subsets of L. If π ∈ L1, we write K ∈ π to indicate that the index of the

compact set K in {1, 2, . . . , l} is an element of π. We now proceed to define the “communicating
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cost” between the elements of L1. For π1, π2 ∈ L1, π1 ̸= π2, define

V̂ (π1) := max{Ṽ (K) : K ∈ π1},

Ṽ (π1, π2) := V̂ (π1) + min{Ṽ (K1, K2)− Ṽ (K1) : K1 ∈ π1, K2 ∈ π2},

and

Ṽ (π1) := min{Ṽ (π1, π2) : π2 ∈ L1, π2 ̸= π1}.

That is, Ṽ (π1, π2) is the communication cost from π1 to π2, and it generalises the quantity

Ṽ (Ki, Kj) to 1-cycles. Similarly, Ṽ (π1) generalises the quantity Ṽ (Ki) to 1-cycles. If π1, π2

are 1-cycles, π1 ̸= π2, then upon exit from a small neighbourhood of the elements of π1, the

probability that the process µN enters a small neighbourhoods of the elements of π2 is of the

form exp{−N(Ṽ (π1, π2)− Ṽ (π1))}, and the mean exit time from a small neighbourhood of the

elements of π1 is of the form exp{NṼ (π1)}. We say that π1 → π2 if Ṽ (π1) = Ṽ (π1, π2), and we

say that π1 ⇒ π2 if there is a sequence of arrows leading from π1 to π2. This gives a cycle of

1-cycles, which we call 2-cycles.

Let us now define the hierarchy of cycles. Having defined (m − 1)-cycles and the sets

L0, L1, . . . , Lm−2, we define m-cycles as follows. Note that

Lm−1 = {πm−1 : πm−1 is an (m− 1)-cycle} ∪ {πm−2 ∈ Lm−2 : π
m−2 is not in any (m− 1)-cycle}.

That is, the elements of Lm−1 are either (m−1)-cycles or elements of Lm−2 that are not part of

any (m−1)-cycle; in both cases, they are ultimately viewed as subsets of L. Given πm−1 ∈ Lm−1

and an (m − 2)-cycle πm−2, we write πm−2 ∈ πm−1 if the elements of πm−2 (when it is viewed

as a subset of L) are part of πm−1. For πm−1 ∈ Lm−1, define

V̂ (πm−1) := max{Ṽ (πm−2) : πm−2 ∈ πm−1},

Ṽ (πm−1
1 , πm−1

2 ) := V̂ (πm−1
1 ) + min{Ṽ (πm−2

1 , πm−2
2 )− Ṽ (πm−2

1 ) : πm−2
1 ∈ πm−1

1 , πm−2
2 ∈ πm−1

2 },

and

Ṽ (πm−1
1 ) := min{Ṽ (πm−1

1 , πm−1
2 ) : πm−1

2 ∈ Lm−1, π
m−1
2 ̸= πm−1

1 }.
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We say that πm−1
1 → πm−1

2 if Ṽ (πm−1
1 ) = Ṽ (πm−1

1 , πm−1
2 ). We have

Definition 2.2. An m-cycle πm is a directed graph on a subset of elements of Lm−1 satisfying

1. For πm−1
1 , πm−1

2 ∈ Lm−1, π
m−1
1 ∈ πm and πm−1

1 ⇒ πm−1
2 implies πm−1

2 ∈ πm.

2. For any πm−1
1 , πm−1

2 ∈ πm, we have πm−1
1 ⇒ πm−1

2 and πm−1
2 ⇒ πm−1

1 .

If we continue this way, for some m ≥ 1, the set Lm will eventually be a singleton, at which

point we stop. See [86] for a numerical example that consists of three 1-cycles and a 2-cycle

when L has 9 elements.

We now state some results on the mean exit time from a cycle and the most probable cycle

the process µN visits upon exit from a given cycle. For convenience, the set of elements of

L constituting a k-cycle πk (through the hierarchy of cycles) is also denoted by πk. Also, for

W ⊂ L, we define γW = ∪i∈Wγi.

Corollary 2.3. Let πk be a k-cycle and Ki ∈ πk. Let W = L \ πk. Given ε > 0, there exist

ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γi ∩MN
1 (Z), and N ≥ N0, we have

exp{N(Ṽ (πk)− ε)} ≤ Eν τ̂W ≤ exp{N(Ṽ (πk) + ε)}.

Corollary 2.4. Let πk
1 , π

k
2 be k-cycles, πk

1 ̸= πk
2 , and Ki ∈ πk

1 . Let W = L \ πk
1 . Given ε > 0,

there exist ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γi ∩MN
1 (Z), and N ≥ N0, we have

exp{−N(Ṽ (πk
1 , π

k
2)− Ṽ (πk

1) + ε)} ≤ Pν(µ
N(τ̂W ) ∈ γπk

2
)

≤ exp{−N(Ṽ (πk
1 , π

k
2)− Ṽ (πk

1)− ε)}.

Remark 2.4. Note that Corollary 2.3 follows from Lemma 2.7 and the fact that Ii(W ) =

Ṽ (πk) (which is shown in [44, Corollary A.4, Appendix]). Corollary 2.4 is a consequence of

Lemma 2.5 along with the fact that min{Ii,j(W ) : i ∈ π̂k} = Ṽ (πk, π̂k) − Ṽ (πk) (see [44,

Corollary A.6, Appendix]). Similar estimates as in Corollaries 2.3 and 2.4 in the case of small

noise diffusion processes have been shown in [44, Corollary 1.10, Part I] and [44, Corollary 1.11,

Part I], respectively.

We also need the following lemmas that provide estimates on the probabilities of exit within

certain times from given cycles.
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Lemma 2.8. Let πk
1 , π

k
2 be k-cycles and let πk

1 → πk
2 . Then, given ε > 0, there exist δ > 0,

ρ > 0 and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ γπk
1
∩MN

1 (Z), and N ≥ N0, we have

Pν

(
τ̄πk

1
≤ exp{N(Ṽ (πk

1)− δ)}, µN(τ̄πk
1
) ∈ γπk

2

)
≥ exp{−Nε}.

Lemma 2.9. Let πk be a k-cycle. Then, given ε > 0, there exists ρ > 0 such that for all ρ1 ≤ ρ,

we have

lim
N→∞

sup
ν∈γ

πk∩MN
1 (Z)

Pν

(
exp{N(Ṽ (πk)− ε)} ≤ τ̄πk ≤ exp{N(Ṽ (πk) + ε)}

)
= 1.

Furthermore, given ε > 0, there exist δ > 0, ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ,

ν ∈ γπk ∩MN
1 (Z), and N ≥ N0, we have

Pν

(
τ̄πk < exp{N(Ṽ (πk)− δ)}

)
≤ exp{−Nε}, and

Pν

(
τ̄πk > exp{N(Ṽ (πk) + δ)}

)
≤ exp{−Nε}.

Remark 2.5. Lemma 2.9 can be proved as follows. From Corollary 2.3, we have that the mean

exit time from a small neighbourhood of the elements of πk
1 is of the form exp{NṼ (πk

1)}.
From Corollary 2.4, we have that, upon exit from a small neighbourhood of the elements

of πk
1 , the process µN enters a small neighbourhood of the elements of πk

2 is of the form

exp{−N(Ṽ (πk
1 , π

k
2) − Ṽ (πk

1)}. Using these facts, we can proceed via the proof of [37, Chap-

ter 6, Theorem 4.2] to transfer the estimate on the mean of τ̄πk
1
to the estimates on the proba-

bility for τ̄πk
1
to lie between exp{N(Ṽ (πk

1)− δ)} and exp{N(Ṽ (πk
1) + δ)}. To prove Lemma 2.8,

in addition to the above facts, we note that with high probability, the process µN enters a small

neighbourhood of the elements of πk
2 upon exit from a small neighbourhood of the elements

of πk
1 when πk

1 → πk
2 . Similar estimates as in Lemmas 2.8 and 2.9 in the case of small noise

diffusion processes have been shown in [44, Lemma 2.1, Part I] and [44, Lemma 2.2, Part I],

respectively.

Lemma 2.10. Let πk be a k-cycle and assume that Ṽ (πk) > 0. Given ε > 0, there exist δ > 0,

ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ, ν ∈ MN
1 (Z), and N ≥ N0, we have

P0,ν(τ̄πk ≤ exp{N(V̂ (πk) + δ}) ≤ exp{−N(Ṽ (πk)− V̂ (πk)− ε)}.

Proof. We proceed via the steps in the proof of [44, Lemma 2.1, Part III]. Let πk−1 ∈ πk be a

(k−1)-cycle such that Ṽ (πk−1) = V̂ (πk). With ρ1 > 0 to be chosen later, for each n ≥ 1, define
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the minimum of τ̄πk and successive entry and exit times from a ρ1-neighbourhood of πk−1 as

follows:

θ̂0 := inf{t > 0 : µN(t) ∈ [πk−1]ρ1} ∧ τ̄πk ,

θ̄n := inf{t > θ̂n−1 : µ
N(t) ∈ [L \ πk−1]ρ1} ∧ τ̄πk ,

θ̂n+1 := inf{t > θ̄n : µN(t) ∈ [πk−1]ρ1} ∧ τ̄πk .

With δ > 0 to be chosen later, using the strong Markov property, for any ν ∈ [πk]ρ1 ∩MN
1 (Z),

we have

Pν(τ̄πk ≤ exp{N(V̂ (πk) + δ)})

= Pν(θ̂0 = τ̄πk , τ̄πk ≤ exp{N(V̂ (πk) + δ)})

+ Pν

(
θ̂0 < τ̄πk ,

⋃
n≥1

{
τ̄πk = θ̄n, τ̄πk ≤ exp{N(V̂ (πk) + δ)}, τ̄πk ≥ θ̂n−1

})

+ Pν

(
θ̂0 < τ̄πk ,

⋃
n≥1

{
τ̄πk = θ̂n, τ̄πk ≤ exp{N(V̂ (πk) + δ)}, τ̄πk ≥ θ̄n

})
. (2.7)

We now upper bound each of the terms in 2.7. Consider the first term. It can be shown using

Corollary 2.4 and [44, Corollary A.6, Appendix] that, there exist ρ1 > 0 and δ > 0 such that

for any ν ∈ [πk]ρ1 and sufficiently large N , we have

Pν(θ̂0 = τ̄πk) ≤ exp{−N(Ṽ (πk)− V̂ (πk)− ε)}.

Consider the second term in 2.7. For any ν1 ∈ [πk−1]ρ1 ∩ MN
1 (Z), the probability of the

unionised event can be upper bounded by

Pν1

(⋃
n≥1

{
τ̄πk = θ̄n, τ̄πk ≤ exp{N(V̂ (πk) + δ)}, τ̄πk ≥ θ̂n−1

})

≤ Pν1

(
M⋃
n=1

{
τ̄πk = θ̄n, τ̄πk ≤ exp{N(V̂ (πk) + δ)}, τ̄πk ≥ θ̂n−1

})

+ Pν1

( ⋃
n≥M+1

{
τ̄πk = θ̄n, τ̄πk ≤ exp{N(V̂ (πk) + δ)}, τ̄πk ≥ θ̂n−1

})
≤ Pν1(τ̄πk = θ̄n and τ̄πk ≥ θ̂n−1 for some n ≤ M)

+ Pν1(θ̂M ≤ exp{N(V̂ (πk) + δ)} and θ̂M ≤ τ̄πk)
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≤ Pν1(θ̂M = τ̄πk) + Pν1(θ̂M ≤ exp{N(V̂ (πk) + δ)} and θ̂M ≤ τ̄πk).

Again, the first term above can be bounded by

Pν1(θ̂M ≤ τ̄πk) ≤ exp{−N(Ṽ (πk)− V̂ (πk)− ε)},

for all ν1 ∈ [πk−1]ρ1 ∩ MN
1 (Z) and sufficiently large N . The second term can be bounded by

exp{−NM} for large enoughM , by the same argument used in the proof of [44, Lemma 1.7, Part I].

Choosing M sufficiently large, the above implies that the second term in (2.7) is bounded by

exp{−N(Ṽ (πk) − V̂ (πk) − ε)}. A similar argument gives the same bound for the third term

in (2.7).

2.3.4 LDP for the invariant measure

Using the estimates (2.5) on the transition probabilities of the discrete time Markov chain ZN ,

we can study the large deviations of the process µN in the stationary regime. Recall that ℘N

denotes the unique invariant probability measure of the process µN . Also recall that G(i) is the

set of all directed graphs g on L such that (a) every node other than i has exactly one outgoing

arrow and (b) there are no closed cycles in g. We state the following result:

Theorem 2.7 ([15, Theorem 2.2]). Assume (A1), (A2), and (B1). Then, the sequence of

invariant measures {℘N , N ≥ 1} satisfies the large deviation principle on M1(Z) with rate

function s given by

s(ξ) = min
1≤i≤l

{W (i) + V (Ki, ξ)} − min
1≤j≤l

W (j), (2.8)

where

W (i) = min
g∈G(i)

∑
(m,n)∈g

Ṽ (m,n).

The form of the rate function s in Theorem 2.7 is also related to the form of the invariant

measure in the context of Markov chains on finite state spaces whose transition kernels are

of the form (2.5); see, for example, [28, Section 1.1]. Also, see [13] for an analogous result in

a boundary driven symmetric simple exclusion process, which involves the study of the LDP

for the invariant measure in an infinite-dimensional setting. However, our focus is on sharp
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estimates on the rate of convergence to the invariant measure which is the subject of the next

section.

2.3.5 Convergence to the invariant measure

In this section, we prove our first main result on the time required for the convergence of µN

to its invariant measure.

Let i0 ∈ L be such that min{Ṽ (g) : g ∈ G(i0)} = min{Ṽ (g) : g ∈ G(i), i ∈ L}. We

anticipate that Ki0 is one of the most stable ω-limit sets (among possibly others) for the

dynamics (2.1). This is because Theorem 2.7 tells us that the rate function that governs the

LDP for {℘N , N ≥ 1} vanishes on Ki0 . Hence, for a large but fixed N , over large time intervals,

one expects that there is positive probability (in the exponential scale) for the process µN to

be in a small neighbourhood of Ki0 .

Define

Λ :=


min{Ṽ (g) : g ∈ G({i}), i ∈ L}

−min{Ṽ (g) : g ∈ G({i, j}), i, j ∈ L, i ̸= j}, if |L| ≥ 2,

0, if |L| = 1.

(2.9)

Since we are interested in the case when (2.1) has multiple ω-limit sets, we assume throughout

that Λ > 0. The motivation to define this constant Λ is the following. Since the process µN

spends most of the time near one of the compact sets Ki, we expect that it mixes well when the

discrete time Markov chain ZN , with transition probabilities of the form exp{−NṼ (Ki, Kj)}
given in (2.5), mixes well. The mixing time of ZN is determined by the real part of (1− λ̂N

2 ),

where λ̂N
2 is the second largest (in absolute value) eigenvalue of an l × l transition probability

matrix whose (i, j)th entry is given by exp{−NṼ (Ki, Kj)}; it turns out that this scales as

exp{−NΛ} [37, Chapter 6, Theorem 7.3]. Thus, we expect that, when time is of the order

exp{NΛ}, the process µN mixes well.

Let PT (ν, ·) = Pν(µ
N(T ) ∈ ·) denote the transition probability kernel associated with the

process µN . Note that we suppress the dependence on N for ease of readability. We first show

a lower bound for the transition probability PT (ν,Ki0) of reaching a small neighbourhood of

Ki0 when T is of the order exp{N(Λ− δ0)} for some δ0 > 0.

Theorem 2.8. Given ε > 0, there exist δ0 > 0, ρ > 0, and N0 ≥ 1 such that for all ρ1 ≤ ρ,

ν ∈ MN
1 (Z), and N ≥ N0, we have

PT0(ν, γi0) ≥ exp{−Nε}, (2.10)
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where T0 = exp{N(Λ− δ0)}. Furthermore, there exist ν0 ∈ M1(Z) and β > 0 such that for all

ν ∈ [ν0]ρ1 ∩MN
1 (Z) and N ≥ N0,

PT0(ν, γi0) ≤ exp{−Nβ}. (2.11)

Proof. We follow the steps in Hwang and Sheu [44, Part I, Theorem 2.3]. With ρ > 0 to be

chosen later, we first show that (2.10) holds for all ν ∈ γ ∩ MN
1 (Z). Towards this, let m be

the smallest integer such that Lm+1 is a singleton. For 0 ≤ k ≤ m, let πk
0 ∈ Lk be the k-cycle

containing i0. Let Vk = max{Ṽ (πk) : πk ⊂ πk+1
0 , πk ̸= πk

0}. Using [44, Lemma A.10, Appendix],

we have Λ = max{Vk : 0 ≤ k ≤ m}.
Fix j ∈ L and consider ν ∈ [Kj]ρ. Let π

m
1 ∈ Lm be such that Kj ∈ πm

1 . If π
m
1 ̸= πm

0 , then we

have πm
1 ⇒ πm

0 , that is, there exists πm
2 , π

m
3 , . . . , π

m
n = πm

0 , n ≤ l such that πm
1 → πm

2 → πm
3 →

· · · → πm
n = πm

0 . Therefore, with δ to be chosen later, by the strong Markov property, we have

Pν(τ̂πm
0
≤ n exp{N(Vm − δ)})

≥ Eν(1{τ̄πm
1
≤exp{N(Vm−δ)}} · 1{µN (τ̄πm

1
)∈πm

2 }

× EµN (τ̄πm
1
)(1{τ̄πm

2
≤exp{N(Vm−δ)}} · 1{µN (τ̄πm

2
)∈πm

3 }

· · · × EµN (τ̄πm
n−2

)(1{τ̄πm
n−1

≤exp{N(Vm−δ)}} · 1{µN (τ̄πm
n−1

)∈πm
0 })

· · · )).

Since V (πm
i ) ≤ Vm for all 1 ≤ i ≤ n, the above becomes

Pν(τ̂πm
0
≤ n exp{N(Vm − δ)})

≥ Eν(1{τ̄πm
1
≤exp{N(Ṽ (πm

1 )−δ)}} · 1{µN (τ̄πm
1
)∈πm

2 }

× EµN (τ̄πm
1
)(1{τ̄πm

2
≤exp{N(Ṽ (πm

2 )−δ)}} · 1{µN (τ̄πm
2
)∈πm

3 }

· · · × EµN (τ̄πm
n−2

)(1{τ̄πm
n−1

≤exp{N(Ṽ (πm
n−1)−δ)}} · 1{µN (τ̄πm

n−1
)∈πm

0 })

· · · )).

By Lemma 2.8, there exist ρ > 0, δ > 0 and N0 ≥ 1 such that each of the above probabilities

is at least exp{−Nε/l} for sufficiently large N , i.e. we have

Pν(τ̂πm
0
≤ n exp{N(Vm − δ))}) ≥ exp{−Nnε/l} ≥ exp{−Nε},
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On the other hand, if Kj is such that Kj ∈ πm
0 , the above holds trivially. Therefore, there exist

δ1 > 0 and N1 ≥ 1 such that for all ν ∈ γ ∩MN
1 (Z) and N ≥ N1, we have

Pν(τ̂πm
0
≤ exp{N(Vm − δ1)}) ≥ exp{−Nε}.

We now use the above bound to show (2.10). Let T = exp{N(Λ− δ1)}, Tm = exp{N(Vm − δ1)}
and Tm−1 = exp{N(Vm−1 − δ1)}. Then, for any ν ∈ γ ∩MN

1 (Z) and N ≥ N1, we have

Pν(µ
N(T ) ∈ γi0) ≥ Eν(1{τ̂πm

0
≤Tm} · 1{µN (T−τ̂πm

0
)∈γi0})

= Eν(1{τ̂πm
0
≤Tm} · EµN (τ̂πm

0
)(1{µN (T−τ̂πm

0
)∈γi0}))

≥ inf
ν′∈[πm

0 ]ρ∩MN
1 (Z)

T−Tm≤t≤T

Pν′(µ
N(t) ∈ γi0)Pν(τ̂πm

0
≤ Tm)

≥ inf
ν′∈[πm

0 ]ρ∩MN
1 (Z)

T−Tm≤t≤T

Pν′(µ
N(t) ∈ γi0) exp{−Nε}, (2.12)

where the second equality follows from the strong Markov property. To get a lower bound for

the above infimum, fix ν ∈ [πm
0 ]ρ ∩ MN

1 (Z) and T − Tm ≤ t ≤ T . Define the stopping time

θ := inf{s > t − Tm−1 : µN(s) ∈ [πm
0 ]ρ}. Then, for a large T ∗ (not depending on N) to be

chosen later, we have

Pν(µ
N(t) ∈ γi0)

≥ Eν(1{θ≤t−Tm−1+T ∗,τ̄πm
0
>T} · EµN (θ)(1{µN (t−θ)∈γi0})

≥ Pν(θ ≤ t− Tm−1 + T ∗, τ̄πm
0
> T ) inf

ν′∈[πm
0 ]ρ∩MN

1 (Z)
Tm−1−T ∗≤t≤Tm−1

Pν′(µ
N(t) ∈ γi0). (2.13)

Note that

Pν(θ ≤ t− Tm−1 + T ∗, τ̄πm
0
> T ) = Pν(τ̄πm

0
> T )− Pν(θ > t− Tm−1 + T ∗, τ̄πm

0
> T ).

By Lemma 2.9, since Λ ≤ Ṽ (πm
0 ), we have

Pν(τ̄πm
0
> T ) ≥ Pν(τ̄πm

0
> exp{N(Ṽ (πm

0 )− δ)}) → 1

as N → ∞. For the second term, note that

Pν(θ > t− Tm−1 + T ∗, τ̄πm
0
> T )
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= Pν(µ
N(s) /∈ [πm

0 ]ρ for all t− Tm−1 ≤ s ≤ t− Tm−1 + T ∗, τ̄πm
0
> T )

= Pν(µ
N(s) /∈ γ for all t− Tm−1 ≤ s ≤ t− Tm−1 + T ∗, τ̄πm

0
> T )

≤ Pν(µ
N(s) /∈ γ for all t− Tm−1 ≤ s ≤ t− Tm−1 + T ∗).

The second equality follows since µN(s) /∈ [πm
0 ]ρ and τ̄πm

0
> T implies that we have exited [πm

0 ]ρ

and we have not yet entered a neighbourhood of any other attractor, which is the same as

saying µN(t) /∈ γ and τ̄πm
0
> T . By the Markov property, the above probability equals

Eν

(
EµN (t−Tm−1)(1{µN (s)/∈γ for all s∈[t−Tm−1,t−Tm−1+T ∗]})

)
≤ sup

ν′∈F
Pν′(τF ≥ T ∗),

where F = M1(Z) \ γ. By Lemma 2.3, T ∗ can be chosen large enough (not depending on N)

that the above probability is at most 1/2. Therefore, (2.13) becomes

inf
ν∈[πm

0 ]ρ∩MN
1 (Z)

T−Tm≤t≤T

Pν(µ
N(t) ∈ γi0) ≥

1

2
inf

ν′∈[πm
0 ]ρ∩MN

1 (Z)
Tm−1−T ∗≤t≤Tm−1

Pν′(µ
N(t) ∈ γi0),

and (2.12) becomes

Pν(µ
N(T ) ∈ γi0) ≥

1

2
exp{−Nε} inf

ν′∈[πm
0 ]ρ∩MN

1 (Z)
Tm−1−T ∗≤t≤Tm−1

Pν′(µ
N(t) ∈ γi0),

for sufficiently large N and ν ∈ γ ∩MN
1 (Z). Repeating the above argument m times, we see

that there exists N2 ≥ 1 such that for all ν ∈ γ and N ≥ N2, we have

Pν(µ
N(T ) ∈ γi0) ≥

(
1

2

)m

exp{−Nmε} inf
ν′∈[π1

0 ]ρ∩MN
1 (Z)

T0−T ∗≤t≤T0

Pν′(µ
N(t) ∈ γi0)

≥
(
1

2

)m

exp{−N(m+ 1)ε} inf
ν′∈[K0]ρ∩MN

1 (Z)
T0−T ∗≤t≤T0

Pν′(µ
N(t) ∈ γi0)

≥
(
1

2

)m+1

exp{−N(m+ 1)ε},

where T0 = exp{N(V0 −mδ)}. Thus, we conclude that there is N3 ≥ 1, δ3 > 0 and ρ > 0 such

that for all ν ∈ γ ∩MN
1 (Z) and N ≥ N3, we have

Pν(µ
N(T ) ∈ γi0) ≥ exp{−N(m+ 3)ε},
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where T = exp{N(Λ−δ3)}. This establishes (2.10) for all ν ∈ γ∩MN
1 (Z). For any ν ∈ MN

1 (Z)\
γ, from Lemma 2.3, there exists T ′ large enough and N4 ≥ N3 such that Pν(τM1(Z)\γ ≤ T ′) ≥ 1

2

for all N ≥ N4. Therefore, we have

Pν(µ
N(T ) ∈ γi0) ≥ Eν(1{τMN

1 (Z)\γ≤T ′} · EµN (τF )(1{µN (T−T ′)∈γi0}))

≥ 1

2
inf
ν′∈γ

Pν′(µ
N(T − T ′) ∈ γi0)

≥ 1

2
exp{−N(m+ 3)ε}.

Thus, we have established (2.10) for any ν ∈ MN
1 (Z).

We now turn to (2.11). Since Λ = max{Vk, 0 ≤ k ≤ m}, there exists a k such that Vk = Λ.

From the definition of Vk, we see that there exists πk ∈ Lk such that

Ṽ (πk) = Λ, πk ⊂ πk+1
0 , and πk ̸= πk

0 .

where πk+1
0 is the (k + 1)-cycle that contain Ki0 . Therefore, Lemma 2.9 implies that, for some

β > 0, for some δ4 < δ3 and an appropriately chosen ρ > 0, with T = exp{N(Λ − δ3)} =

exp{N(Ṽ (πk)− δ3)}, we have

Pν(µ
N(T ) ∈ γi0) ≤ Pν(τ̄πk ≤ T ) ≤ exp{−Nβ},

for any ν ∈ [πk]ρ∩MN
1 (Z) and sufficiently largeN . This completes the proof of the theorem.

The above theorem immediately gives a lower bound on PT (ν, ξ) for any ξ in a small neigh-

bourhood of Ki0 , over time durations of order exp{N(Λ− δ)} for some δ > 0. Let us make this

precise.

Corollary 2.5. Under the conditions of Theorem 2.8, for all ν ∈ MN
1 (Z), ξ ∈ γi0 ∩MN

1 (Z)

and N sufficiently large, we have

PT0(ν, ξ) ≥ exp{−2Nε}.

Proof. Given ε > 0, let ρ,N0 and T0 be as in the statement of Theorem 2.8. Choose t large

enough (not depending on N) and ρ′ < ρ such that for all ρ1 ≤ ρ′ we have St(ν1|ν2) ≤ ε/2 for

all ν1, ν2 ∈ γi0 . This is possible by the joint continuity of the rate function St(·|·) and the fact
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that V (ν1, ν2) = 0 whenever ν1, ν2 ∈ Ki0 . Therefore, using the large deviation lower bound,

there exists N2 ≥ N1 such that

Pt(ν1, ν2) ≥ exp{−N(St(ν2|ν1) + ε/2)} ≥ exp{−Nε},

for all ν1, ν2 ∈ γi0 ∩ MN
1 (Z) and N ≥ N2. Therefore, by Theorem 2.8, for ν ∈ MN

1 (Z), ξ ∈
γi0 ∩MN

1 (Z) and N ≥ N2, we have

PT0(ν, ξ) =
∑

ν2∈γi0∩M
N
1 (Z)

PT0−t(ν1, ν2)Pt(ν2, ξ)

≥ PT0−t(ν1, γi0) inf
ν2∈γi0∩M

N
1 (Z)

Pt(ν2, ξ)

≥ exp{−2Nε}.

2.3.5.1 Proofs of Theorem 2.1 and Theorem 2.2

We now prove our first main result (Theorem 2.1) on the convergence of µN to the invariant

measure and its converse Theorem 2.2. Theorem 2.1 together with Theorem 2.2 shows that the

constant Λ is sharp (in the exponential scale) for the time required for µN to equilibrate.

Define L̃0 := {i ∈ L : s(Ki) = 0}, i.e, L̃0 denotes the set of minimisers of the rate function

s (see (2.8)). Let B(M1(Z)) denotes the space of bounded Borel-measurable functions on

M1(Z).

Proof of Theorem 2.1. We follow the steps in Hwang and Sheu [44, Part I, Theorem 2.5]. Let

ε > 0, and let T0, δ0, ρ, ρ1, and N0 ≥ 1 be as in the statement of Theorem 2.8. Note that, for

any ν ∈ MN
1 (Z), ξ /∈ [L̃0]ρ1 and for some fixed t > 0,

PT0(ν, ξ) =
∑

ν′∈[Ki0
]

PT0−t(ν, ν
′)Pt(ν

′, ξ)

≥ exp{−2Nε} inf
ν′∈[Ki0

]
Pt(ν

′, ξ)

≥ exp{−2Nε} exp{−N sup
ν′∈[Ki0

]

St(ξ|ν ′)}

where the first inequality follows from Corollary 2.5 and the second from the uniform LDP

(Corollary 2.1). Hence, we can find a function U : M1(Z) → [0,∞) such that U(ξ) = 0 for
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ξ ∈ [L̃0]ρ1 and

PT0(ν, ξ) ≥ cN exp{−NU(ξ)} (2.14)

holds for all ν ∈ MN
1 (Z), ξ /∈ [L̃0]ρ1 and sufficiently large N ; here cN is such that

πN(ξ) = cN exp{−NU(ξ)}

is a probability measure on MN
1 (Z). Define QT0(ν, ·) := PT0(ν, ·)/πN(·). Note that cN → 0

exponentially fast as N → ∞. Indeed, since U(ξ) = 0 for all ξ ∈ [L̃0]ρ1 , each of these points

yield πN(ξ) = cN . Since the number of points in [L̃0]ρ1 ∩MN
1 (Z) is exponential in N and since

πN is a probability measure, we see that cN must decay exponentially fast in N . We have, for

any ν1, ν2 ∈ MN
1 (Z) and sufficiently large N ,

Eν1(f(µ
N(T0)))− Eν2(f(µ

N(T0)))

=
∑

ξ∈MN
1 (Z)

PT0(ν1, ξ)f(ξ)−
∑

ξ∈MN
1 (Z)

PT0(ν2, ξ)f(ξ)

=
∑

ξ∈MN
1 (Z)

QT0(ν1, ξ)f(ξ)πN(ξ)−
∑

ξ∈MN
1 (Z)

QT0(ν2, ξ)f(ξ)πN(ξ)

=
∑

ξ∈MN
1 (Z)

(QT0(ν1, ξ)− exp{−2Nε})f(ξ)πN(ξ)

−
∑

ξ∈MN
1 (Z)

(QT0(ν2, ξ)− exp{−2Nε})f(ξ)πN(ξ)

≤ (1− exp{−2Nε})(sup
ξ

f(ξ)− inf
ξ
f(ξ)),

where the last inequality follows from (2.14) and the fact that QT0(·, ·) ≥ 1. Therefore, we have

that

sup
ν1,ν2

|Eν1(f(µ
N(T0)))− Eν2(f(µ

N(T0)))| ≤ (1− exp{−2Nε})∥f∥∞.

Continuing this procedure k times, and by using the Markov property, we get

sup
ν1,ν2

|Eν1(f(µ
N(kT0)))− Eν2(f(µ

N(kT0)))| ≤ (1− exp{−2Nε})k∥f∥∞,
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and hence, we have

sup
ν

|Eν(f(µ
N(kT0)))− ⟨f, ℘N⟩| ≤ (1− exp{−2Nε})k∥f∥∞.

Choose k = exp{N(δ0 + δ)}, then we have kT0 = exp{N(Λ + δ)} and the above becomes

sup
ν

|Eν(f(µ
N(kT0)))− ⟨f, ℘N⟩| ≤ exp{− exp(N(−2ε+ δ0 + δ))}.

We can choose ε small enough such that the quantity −2ε+ δ > 0, and hence for some ε′ > 0,

we have

sup
ν

|Eν(f(µ
N(T )))− ⟨f, ℘N⟩| ≤ exp{− exp(Nε′)},

for sufficiently large N , where T = exp{N(Λ + δ)}. This establishes the result.

Proof of Theorem 2.2. This is a direct consequence of (2.11) established in Theorem 2.8.

2.4 Asymptotics of the second largest eigenvalue for re-

versible processes

In this section, our goal is to understand the convergence rate of µN to its invariant measure

for a fixed N . For this purpose, we shall assume that the Markov process µN is reversible.

That is, the operator LN is self-adjoint in L2(℘N) and it admits a spectral expansion; let 0 =

λN
1 > −λN

2 ≥ −λN
3 . . . denote its eigenvalues in the decreasing order, and let uN

1 ≡ 1, uN
2 , u

N
3 , . . .

denote their corresponding eigenfunctions. Without loss of generality, we assume that the

eigvenfunctions are orthonormal, i.e., (uN
i , u

N
i ) = 1 for each i and (uN

i , u
N
j ) = 0 for each i ̸= j,

where (·, ·) denotes the inner product in L2(℘N). The spectral expansion [5, Section 1.7.2]

enables us to write, for any f ∈ B(M1(Z)),

Eνf(µ
N(t)) = ⟨f, ℘N⟩+

∑
k≥2

e−tλN
k (f, uN

k )u
N
k (ν), (2.15)

Therefore, the convergence rate of Eνf(µ
N(t)) to its stationary value ⟨f, ℘N⟩ is determined

by the leading term in the above sum, which is the second largest eigenvalue λN
2 . Hence, to

understand convergence of µN to its invariant measure, we study the asymptotics of the second

largest eigenvalue λN
2 .

44



We first need the following lemma that estimates the probability that the process µN is

outside a small neighbourhood of the set ∪l
i=1Ki.

Lemma 2.11. Fix ρ1 > 0 and let B be the ρ1-neighbourhood of ∪i∈LKi. Given ε > 0, there

exist δ > 0 and N0 ≥ 1 such that for each ν ∈ MN
1 (Z) and N ≥ N0, we have

Pν

(
µN(T ) ∈ MN

1 (Z) \B
)
≤ exp{−Nδ},

where T = exp{N(Λ + ε)}.

This result can be proved using Theorem 2.1 which deals with the convergence to the in-

variant measure and Theorem 2.7 which addresses large deviations of the invariant measure

{℘N , N ≥ 1}. Indeed, from Theorem 2.7, since the function s in (2.8) is strictly positive out-

side ∪l
i=1Ki, the probability of the complement of a small neighbourhood of ∪l

i=1Ki under ℘
N

decays exponentially in N . But when T is of the order exp{N(Λ + ε)}, from Theorem 2.1, the

law of the random variable µN(T ) is not far from ℘N . Therefore, the probability that µN(T )

lies outside a small neighbourhood of ∪l
i=1Ki decays exponentially in N .

We are now ready to prove our next main result (Theorem 2.3) on the asymptotics of the

second largest eigenvalue λN
2 .

Proof of Theorem 2.3. (Lower bound): Suppose that there exists a subsequence {Nk, k ≥ 1}
such that

log λNk
2 < −Nk(Λ + ε) (2.16)

for some ε > 0. We will show that this contradicts
∫
(uNk

2 (ν))2℘N(dν) = 1 for sufficiently large

k. Fix ρ > 0 and define B := ∪l
i=1[Ki]ρ. Then, using the lower semicontinuity of the rate

function St(·|·) and Corollary 2.1 on uniform LDP, we see that for sufficiently large t, there

exists δ1 > 0 such that inf{St(ξ|ν) : ξ, ν ∈ Bc} = δ1 > 0. Therefore, for any ν ∈ Bc ∩MN
1 (Z)

and any δ2 > 0, there exists N0 ≥ 1 such that for all N ≥ N0,

Pν(µ
N(t) = ν) ≤ exp{−N(St(ν|ν)− δ2)} ≤ exp{−N(δ1 + δ2)}.

On the other hand, (2.15) implies that,

Pν(µ
N(t) = ν) = Eν(1{ν}(µ

N(t)))

≥ e−λN
2 t(uN

2 (ν))
2℘N(ν),
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so that ∫
Bc

|uN
2 |2℘N(dν) ≤ exp{−N(δ1 + δ2)} (2.17)

for all N ≥ N0. To bound the integral over B, by Theorem 2.1, with T = exp{N(Λ + ε/2)},
there exist δ3 > 0 and N1 ≥ N0 such that for all N ≥ N1,∣∣Eνf(µ

N(T ))− ⟨f, ℘N⟩
∣∣ ≤ ∥f∥∞ exp{− exp(Nδ3)},

for any f ∈ B(M1(Z)). On the other hand, from (2.15), for any ν ∈ B ∩ MN
1 (Z), with

f = 1{ν}, we have

∣∣Eνf(µ
N(T ))− ⟨f, ℘N⟩

∣∣ =∣∣∣∣∑
i≥2

exp{−λN
i T}(f, uN

i (ν))u
N
i (ν)

∣∣∣∣
≥ exp{−λN

2 T}(uN
2 (ν))

2℘N(ν),

so that, by our assumption (2.16), there exists a k0 ≥ 1 such that

uNk
2 (ν))2℘Nk(ν) ≤ exp{λNk

2 T} exp{− exp(Nkδ3)}

≤ exp{2 exp(−Nk(Λ + ε)) exp(Nk(Λ + ε/2))} exp{−Nkδ3}

for all k ≥ k0. Since |MNk
1 (Z)| ≤ (Nk + 1)|Z| for all k, the above implies that, for some δ4 > 0,∫

B

(uNk
2 (ν))2℘Nk(dν) ≤ exp{−Nkδ4} (2.18)

for all k ≥ k0. Therefore, (2.17) and (2.18) implies that, for some δ > 0,∫
M1(Z)

(uNk
2 (ν))2℘Nk(dν) ≤ exp{−Nkδ}

for all sufficiently large k, which is a contradiction to
∫
(uNk

2 (ν))2℘Nk(dν) = 1 for all sufficiently

large k.

(Upper bound): Suppose that there exists a subsequence {Nk, k ≥ 1} such that log λN
2 >

Nk(−Λ + ε) for some ε > 0. Let ν0, δ0 < ε/2, ρ,N0 be as in Theorem 2.8. Then, with
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f(ν) = 1{[Ki0
]ρ/2}(ν) and T = exp{N(Λ− δ0/2)}, (2.11) implies that

Eνf(µ
N(T )) = Pν(µ

N(T ) ∈ [Ki0 ]ρ/2) ≤ exp{−Nβ}

for all N ≥ N0 and ν ∈ [ν0]ρ/2 ∩ MN
1 (Z). Also, by Theorem 2.7, for any δ > 0, there exists

N1 ≥ N0 such that for all N ≥ N1, we have

⟨f, ℘N⟩ = ℘N([Ki0 ]ρ/2) ≥ exp{−Nδ}.

This is possible since infξ∈[Ki0
]ρ/2 s(ξ) = 0. Therefore, for all N ≥ N1,∫

M1(Z)

|Eν(f(µ
N(T )))− ⟨f, ℘N⟩|2℘N(dν)

≥
∫
[ν0]ρ/2

∣∣Eν(f(µ
N(T )))− ⟨f, ℘N⟩

∣∣2 ℘N(dν)

≥ ℘N([ν0]ρ/2)(exp{−Nβ} − exp{−Nδ})

≥ ℘N([ν0]ρ/2) exp{−Nδ1}, for some δ1 > 0

≥ exp{−Nδ2}, for some δ2 > 0,

where the last inequality follows by Theorem 2.7. On the other hand, for any function f with∫
|f |2d℘N ≤ 1, we have∫

M1(Z)

|Eν(f(µ
N(T )))− ⟨f, ℘N⟩|2℘N(dν)

=

∫
M1(Z)

∑
k≥2

e−2λN
k T (f, uN

k )
2uN

k (ν)
2℘N(dν)

≤ exp{−2λN
2 T}

∫
M1(Z)

|f |2d℘N

≤ exp{−2λN
2 T}.

Therefore, we have exp{−2λN
2 T} ≥ exp{−Nδ2} whenever N ≥ N1. By our assumption, we see

that

exp{−2 exp(−Nk(Λ− ε)) exp(Nk(Λ− δ0))} ≥ exp{−Nkδ1}

for sufficiently large k, which is a contradiction since δ0 < ε/2.
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Using the above theorem, we see that, if Λ > 0, then as N becomes large, it takes longer for

the process µN to be close to its invariant measure. This particularly means that metastable

states reduce the rates of convergence of µN to its invariant measure. On the other hand, if

there is a unique global attractor of the limiting McKean-Vlasov equation (2.1), then we see

that Λ = 0, and convergence rate of µN to its invariant measure does not suffer from such a

slowing down phenomenon.

Note that the spectral expansion in (2.15) is crucial in the proof of Theorem 2.3 to be

able to use the results on the large time behaviour of µN established in Section 2.3 to obtain

the asymptotics of λN
2 . The main purpose of Theorem 2.3 is to demonstrate that, in the

reversible case, the asymptotics of λN
2 can be easily obtained as an application of the study of

the large time behaviour of µN . Even in the non-reversible case, one can obtain asymptotics of

the real part of λN
2 via other approaches; see, for example, [89], where the author obtains the

asymptotics of the real part of the second largest eigenvalue of the generator corresponding to a

small noise diffusion process via examining eigenvalues of a discrete time chain (with transition

probabilities of the form appearing in (2.5)) and transferring them to the operator. Further,

the asymptotics of all the eigenvalues of an l × l transition probability matrix whose (i, j)th

entry, for i ̸= j, is given by exp{−NṼ (Ki, Kj)} can also be obtained; the real part of (1− λ̂N
k )

(where λ̂N
k is the kth eigenvalue of the matrix, 2 ≤ k ≤ l) decays exponentially in N where the

exponent is given by a quantity analogous to Λ in (2.9) in which the first minimum is taken

over all graphs in G(W ) with |W | = k− 1 and the second minimum is taken over all graphs in

G(W ) with |W | = k, see Freidlin and Wentzell [37, Chapter 6, Theorem 7.3]. However, it is not

clear how to transfer these asymptotics to the eigenvalues of LN using the large time behaviour

of µN , a question that we leave for the future. This question is also related to the behaviour

of µN over times of the order of the inverse of these eigenvalues. For reversible Markov chains

with a small parameter, such questions have been studied by Miclo [61, 62]. In particular, it

would be interesting to investigate the asymptotics of λN
3 , since the convergence rate of µN to

℘N depends on whether λN
3 decays as exp{−NΛ} or λN

3 ≫ exp{−NΛ}.

Example 2.2. We provide a simplified Curie-Weiss model of magnetisation for which LN is

reversible with respect to ℘N for all N ≥ 1 [25]. Let Z = {−1,+1}. The states represent the

direction of magnetisation of the particles. For each N ≥ 1, consider the following probability

measure on ZN :

πN(z
N) =

1

CN

exp

N

(
1

N

N∑
n=1

zn

)2
 , zN = (z1, z2, . . . , zN) ∈ ZN , (2.19)
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where CN is a normalisation constant. Given ξ ∈ M1(Z), define the total magnetisation by

ξtot = ξ(+1)− ξ(−1). Define the transition rates

λz,(−z)(ξ) = exp{−2zξtot}, z ∈ Z, ξ ∈ M1(Z).

It is straightforward to verify that the Markov process (XN
1 , . . . , XN

N ) that describes the joint

evolution of the states of all the particles is reversible with respect to its invariant measure πN

in (2.19). That is, for every zN , z̃N ∈ ZN that differ on the nth component, we have (recall

that zN = 1
N

∑N
n=1 δzn)

πN(z
N)λzn,(−zn)(z

N) = πN(z̃
N)λ(−zn),zn(z̃

N). (2.20)

From the reversibility of (XN
1 , . . . , XN

N ), noting that ℘N(ξ) is the sum of πN(zN) over all zN

such that zN = ξ, it is straightforward to check that µN is reversible. For completeness, we

show the reversibility of µN by checking the detailed balance condition. Towards this, we first

note that for any ξ, ξ̃ ∈ MN
1 (Z) such that ξ(z) = ξ̃(z) + 1/N for some z ∈ Z (which ensures

that ξ(z) > 0, and hence ξ̃(−z) > 0), we have

ξ(z)× (Number of zN ∈ ZN such that zN = ξ)

= ξ̃(−z)× (Number of zN ∈ ZN such that zN = ξ̃).

(2.21)

Let zNξ ∈ ZN (resp. z̃N
ξ̃

∈ ZN) be such that zNξ = ξ (resp. z̃N
ξ̃

= ξ̃); i.e., the configuration

z̃N
ξ̃

∈ ZN is obtained from zNξ ∈ ZN by a particle transition z → (−z). Noting that π(zN)

depends only on zN , we have

℘N(ξ)Nξ(z)λz,(−z)(ξ) = πN(z
N
ξ )(Number of zN ∈ ZN such that zN = ξ)Nξ(z)λz,(−z)(ξ)

= πN(z
N
ξ )(Number of zN ∈ ZN such that zN = ξ̃)Nξ̃(−z)λz,(−z)(ξ)

= πN(z
N
ξ̃
)(Number of zN ∈ ZN such that zN = ξ̃)Nξ̃(−z)λ(−z),z(ξ̃)

= ℘N(ξ̃)Nξ̃(−z)λ(−z),z(ξ̃),

where we have used (2.21) in the second equality and (2.20) in the third equality. It follows

that µN is reversible.

Remark 2.6. Another situation where µN is reversible with respect to ℘N is in the non-

interacting case (i.e. when, for each (z, z′) ∈ E , λz,z′(·) is a constant function, which we
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denote by λz,z′) where the Markov process on Z with generator

f 7→
∑

z′:(z,z′)∈E

(f(z′)− f(z))λz,z′ , z ∈ Z

is reversible with respect to its invariant measure (i.e. when the Markov process corresponding

to a single particle’s evolution on Z is reversible with respect to its invariant measures). This

results in a reversible empirical measure process µN . However, the authors are not aware

of a general condition (in terms of the transition rates λz,z′(·), (z, z′) ∈ E) that characterises

reversibility of µN .

2.5 Convergence to a global minimum via controlled ad-

dition of particles

In this section, our goal is to increase the number of particles N over time so as to obtain, with

high probability, convergence of the empirical measure process to a global minimum of the rate

function s that governs the LDP for the sequence of invariant measure {℘N , N ≥ 1}.
Fix c > 0. Let N0 = min{n ∈ N : exp{nc} − 2 ≥ 0}, tN0 = 0, and for each N > N0, let

tN = exp{Nc} − 2. For each N ≥ N0 define the generator LN
t acting on bounded measurable

functions on M1(Z) by

LN
t f(ξ) :=

∑
(z,z′)∈E

Ntξ(z)λz,z′(ξ)

[
f

(
ξ +

ez′

Nt

− ez
Nt

)
− f(ξ)

]
, t ∈ [tN , tN+1).

where Nt = N for t ∈ [tN , tN+1). Let z0 ∈ Z be a fixed state and let ν ∈ MN0
1 (Z). We say

that a probability measure P0,ν on D([0,∞),M1(Z)) is a solution to the martingale problem

for {LN , N ≥ N0} with initial condition ν if P0,ν(µ̄ : µ̄(0) = ν) = 1; for each N ≥ N0, the

restriction of P0,ν on D([tN , tN+1),MN
1 (Z)) is a solution to the D([tN , tN+1),MN

1 (Z))-valued

martingale problem for LN ; and

P0,ν

(
µ̄ : µ̄(tN+1) =

N

1 +N
µ̄(t−N+1) +

1

N + 1
δz0

)
= 1.

Again, by the boundedness assumption on transition rates (A2), for each ν ∈ MN0
1 (Z), there

exists a unique probability measure P0,ν that solves the martingale problem for {LN , N ≥ N0}
with initial condition ν. Let µ̄ be the process on D([0,∞),M1(Z)) whose law is P0,ν . To
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describe the process in words, we start with N0 particles and follow the mean-field interaction

described in Section 2.1.1, except that at each time instant tN , N > N0, we add a new particle

whose state is set to z0. Similarly, for t > 0 and ν ∈ M⌊log(t+2)⌋
1 , let Pt,ν denote the law of the

process (µ̄(t′), t′ ≥ t) with µ̄(t) = ν.

We anticipate that if c is small then Nt is so large that the fluid limit kicks in too quickly over

time and the process µ̄ converges (over time) to a local minimum of s with positive probability

depending on the initial condition µ̄(0). When c is sufficiently large, we anticipate that there

is enough time for exploration and therefore we will converge to a global minimum of s. Recall

that the set of global minimisers of s is denoted by L̃0. Our interest in this section is in finding

a constant c∗ such that for all c > c∗ and ν ∈ MN0
1 (Z), we have,

P0,ν(µ̄(t) lies in a neighbourhood of L̃0) → 1 (2.22)

as t → ∞.

We use the results in the previous sections to identify the constant c∗. Since Nt → ∞ as

t → ∞, for a fixed T > 0 and large enough t, the large deviation properties of the process

(µ̄(s), s ∈ [t, t + T ]) from the limiting dynamics (2.1) starting at an arbitrary µ̄(t) can be

obtained similar to the LDP for the process µN studied in Theorem 2.5 and Corollary 2.1.

Therefore, the results in the previous sections on the large time behaviour for the process

(µN(t), t ≥ 0) are also valid for (µ̄(t), t ≥ 0) when time t is large enough; we make these precise

now.

Lemma 2.12 (see Lemma 2.8). Let πk
1 and πk

2 be k-cycles and suppose that πk
1 → πk

2 and

Ṽ (πk
1)/c < 1. Then, given ε > 0, there exist δ > 0 and ρ > 0 such that for all ρ1 < ρ, there is

t∗ > 0 such that

Pt,ν(τ̄πk
1
≤ t+ t(Ṽ (πk

1 )−δ)/c, µ̄(τ̄πk
1
) ∈ γπk

2
) ≥ t−ε/c

holds uniformly for all ν ∈ [πk
1 ]ρ1 ∩MNt

1 (Z) and t ≥ t∗.

Remark 2.7. The condition Ṽ (πk
1)/c < 1 in the above lemma ensures that during the time

duration [t, t + tṼ (πk
1 )/c], for large enough t, the number of particles does not change so that

Lemma 2.8 for the process µN is applicable for the process µ̄.

Lemma 2.13 (see Lemma 2.9). Let πk be a k-cycle and suppose that Ṽ (πk)/c < 1. Then, given

δ > 0 such that (Ṽ (πk) + δ)/c < 1, there exist ε > 0 and ρ > 0 such that for all ρ1 < ρ, there
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is t∗ > 0 such that

Pt,ν(τ̄πk < t+ t(Ṽ (πk)−δ)/c) ≤ t−ε/c, and

Pt,ν(τ̄πk > t+ t(Ṽ (πk)+δ)/c) ≤ t−ε/c

hold uniformly for all ν ∈ [πk]ρ1 ∩MNt
1 (Z) and t ≥ t∗.

Lemma 2.14 (see Lemma 2.10). Let πk be a k-cycle and suppose that V̂ (πk)/c < 1. Given

ε > 0, there exist δ ∈ (0, c− V̂ (πk)) and ρ > 0 such that for all ρ1 ≤ ρ, there is t∗ > 0 such that

Pt,ν(τ̄πk ≤ t+ t(V̂ (πk)+δ)/c) ≤ t−(Ṽ (πk)−V̂ (πk)−ε)/c

holds uniformly for all ν ∈ [πk]ρ1 ∩MNt
1 (Z) and t ≥ t∗.

Recall the definition of the sets L and C from Section 2.3.

Lemma 2.15 (see Lemma 2.3). Given ρ0 > 0 and ρ1 < ρ0 and their associated sets L and C,

given v > 0, there exist T ∗ > 0 and t∗ > 0 such that

Pt,ν(τ̂L ≥ t+ T ∗) ≤ t−v/c

holds uniformly for all ν ∈ C ∩MNt
1 (Z) and t ≥ t∗.

To answer the question on the convergence of µ̄ to a global minimum of s, we define the

following quantities, analogous to what is done in Hwang and Sheu [44]. Let m be such that

Lm+1 is a singleton (denote it by {πm+1}). Define

Am := {πm ∈ Lm : Ṽ (πm) = V̂ (πm+1)}.

Inductively define, for each πk+1 ∈ Lk+1,

Ak(π
k+1) := {πk ∈ πk+1 : Ṽ (πk) = V̂ (πk+1)},

and for each k ≥ 1, define

Ak :=
⋃

πk+1∈Ak+1

Ak(π
k+1).
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Figure 2.1: An example of the hierarchy of cycles with |L| = 9 andm = 2 that depicts the above
definitions. There are four 1-cycles and two 2-cycles. The nodes in the bottom row represent
the elements of L, and the nodes above it represent the hierarchy of cycles. Dashed and dotted
lines indicate the (k − 1)-cycles belonging to a k-cycle. Thick lines indicate the (k − 1)-cycles
that attain maxπk−1∈πk Ṽ (πk−1) for a k-cycle πk. Circles indicate the sets Ak(π

k+1). Dashed
lines indicate the cycle πk−1 /∈ Ak−1(π

k) that attains the maximum in the second line in the
definition of ck−1(π

k); c0(π
1
1) = 0 (which is not indicated in the figure), all other ck−1(π

k) are
positive.

Also, for each πk ∈ Lk, define

ck−1(π
k) :=

{
0, if {πk−1 ∈ πk : πk−1 /∈ Ak−1(π

k)} = ∅,
max{Ṽ (πk−1) : πk−1 /∈ Ak−1(π

k), πk−1 ∈ πk}, otherwise,

and for each k ≥ 1, define

ck−1 := max{ck−1(π
k), : πk ∈ Ak}.

Finally, define

c∗ := max{ck, 0 ≤ k ≤ m}.

See Figure 2.1 that depicts these definitions. Similar to [44, Lemma A.11, Appendix], we can

show that A0 = L̃0, the set of minimisers of the rate function s that governs the LDP for the

invariant measure {℘N , N ≥ 1}. We now prove Theorem 2.4 on convergence of µ̄ to the set of

global minimisers.

Proof of Theorem 2.4. Since L̃0 ̸= L, we have that c∗ > 0. It suffices to show that, for any
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δ > 0 with (c∗ + δ)/c < 1, there exist ε > 0, ρ1 > 0 and t∗ > 0 such that

Pt,ν(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1) ≥ 1− t−ε/c

for all t > t∗ and ν ∈ MNt
1 (Z). Define the stopping time

θ := inf{s > t : µ̄(s) ∈ [L]ρ1}.

By Lemma 2.15, for any M > 0, there exists T ∗ > 0 such that for all ν ∈ MN0
1 (Z) and large

enough t, we have

Pt,ν(θ > t+ T ∗) ≤ t−M/c.

By the strong Markov property, we have

Pt,ν(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

≥ Et,ν(1{θ≤t+T ∗} · Eθ,µ̄(θ)(1{µ̄(t+t(c
∗+δ)/c)∈[L̃0]ρ1}

))

≥ inf
t≤t1≤t+T ∗

ν1∈[L]ρ1

Pt1,ν1(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)(1− t−M/c). (2.23)

To bound the first term above, fix a t1 such that t ≤ t1 ≤ t + T ∗ and ν1 ∈ [L]ρ1 . Define the

stopping time θm := inf{t > t1 : µ̄(t) ∈ [Am]ρ1}. We have

Pt1,ν1(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

≥ Et1,ν1(1{θm<t+t(c
∗+δ/2)/c} · Eθm,µ̄(θm)(1{µ̄(t+t(c

∗+δ)/c)∈[L̃0]ρ1}
))

≥ inf
t≤t2≤t+t(c

∗+δ/2)/c,ν2∈[Am]ρ1

Pt2,ν2(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

× Pt1,ν1(θm ≤ t+ t(c
∗+δ/2)/c). (2.24)

We first bound the second term Pt1,ν1(θm ≤ t+ t(c
∗+δ/2)/c). Note that, by Lemma 2.12, for any

M1 > 0, there exists δ1 > 0 such that

Pt1,ν1(θm > t1 + t
(cm−δ1)/c
1 ) ≤ 1− t

−M1/c
1

for sufficiently large t. Let T1 = t1 + t
(cm−δ1)/c
1 , and define the stopping time θ̂ := inf{t >

T1 : µ̄(t) ∈ [L]ρ1}. Again, by Lemma 2.15, there exists a large enough T ∗ such that PT1,ν(θ̂ >
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T1 + T ∗) ≤ T
−M/c
1 for all ν ∈ M

NT1
1 (Z). Therefore, using the strong Markov property, we have

Pt1,ν1(θm > t+ t(c
∗+δ/2)/c)

≤ Et1,ν1(1{θm≥θ̂,θ̂<T1+T ∗} · Eθ̂,µ̄(θ̂)(1{θm>t+t(c
∗+δ/2)/c}))

+ Pt1,ν1(θ̂ > T1 + T ∗)

≤ Pt1,ν1(θm > T1) sup
T1≤t≤T1+T ∗

ν∈[L]ρ1

Pt,ν(θm > t+ t(c
∗+δ/2)/c) + t

−M/c
1

≤ (1− t
−M1/c
1 ) sup

T1≤t≤T1+T ∗

ν∈[L]ρ1

Pt,ν(θm > t+ t(c
∗+δ/2)/c) + t

−M/c
1 . (2.25)

We now focus on Pt,ν(θm > t+ t(c
∗+δ/2)/c) for a fixed t ∈ [T1, T1 + T ∗] and ν ∈ [L]ρ1 , and repeat

the above steps; this will introduce a multiplication factor of (1− T
−M1/c
1 ) along with

sup
T2≤t≤T2+T ∗

ν∈[L]ρ1

Pt,ν(θm > t+ t(c
∗+δ/2)/c),

where T2 = T1 + T
(cm−δ1)/c
1 , in the first term in (2.25), and an addition of t

−M/c
1 in the second

term. Therefore, repeating the above steps r ∼ t
δ/2c
1 times, we get

Pt1,ν1(θm > t+ t(c
∗+δ/2)/c) ≤

r∏
n=0

(1− T ∗−M1/c
n ) + rt

−M/c
1 ,

where T ∗
0 = t1, and

T ∗
n+1 = T ∗

n + T ∗(cm−δ1)/c
n + T ∗.

Note that,

r∏
n=0

(1− T ∗−M1/c
n ) ≤ exp

{
−

r∑
n=0

T ∗−M1/c
n

}

= exp

{
−

r∑
n=0

T ∗−M1/c−(cm−δ1)/c
n (T ∗

n+1 − T ∗
n)

}

≤ exp

{
−
∫ T ∗

r

T ∗
0

u−(M1/c)−(cm−δ1)/cdu

}
= exp

{
−
(
T ∗1−(cm+M1−δ1)/c
r − t

1−(cm+M1−δ1)/c
1

)}
. (2.26)
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Since Tn ≥ t1 for all n ≥ 1, we see that T ∗
r ≥ t1 + rt

(cm−δ1)/c
1 ∼ t1 + t

(cm−δ1+δ/2)/c
1 . Therefore,

−
(
T ∗1−(cm+M1−δ1)/c
r − t

1−(cm+M1−δ1)/c
1

)
≤ −

(
(t1 + t

(cm−δ1+δ/2)/c
1 )1−(cm+M1−δ1)/c − t

1−(cm+M1−δ1)/c
1

)
≤ −

(
t
1−(cm+M1−δ1)/c
1

(
1 + t

(cm−δ1+δ/2)/c−1
1

)1−(cm+M1−δ1)/c

− 1

)
≤ −c′

(
t
1−(cm+M1−δ1)/c
1 t

(cm−δ1+δ/2)/c−1
1

)
= −c′t

(δ/2−M1)/c
1 ,

for some constant c′ > 0 and large enough t1. Hence, (2.26) becomes

r∏
n=0

(1− T ∗−M1/c

n ) ≤ exp{−c′t
(δ/2−M1)/c
1 }.

We choose M1 = δ/4; the above and (2.25) then implies

Pt1,ν1(θm > t+ t(c
∗+δ/2)/c) ≤ exp{−c′t

δ/4c
1 }+ t

−(M−δ/2)/c
1 ,

and this implies that, for any M ′ > 0,

Pt1,ν1(θm > t+ t(c
∗+δ/2)/c) ≤ t−M ′/c (2.27)

for sufficiently large t, t ≤ t1 ≤ t+ T ∗ and for all ν ∈ [L]ρ1 .

We now bound the first term in (2.24), Pt2,ν2(µ̄(t + t(c
∗+δ)/c) ∈ [L̃0]ρ1) where t ≤ t2 ≤

t + t(c
∗+δ/2)/c and ν2 ∈ [Am]ρ1 . Let πm

0 ∈ Am be the m-cycle such that ν2 ∈ [πm
0 ]ρ1 . Define the

following quantities:

t̃0 := t+ t(c
∗+δ)/c − t(cm−1(πm

0 )+δ)/c, and

t̃1 := t+ t(c
∗+δ)/c − t(cm−1(πm

0 )+δ/2)/c.

Define the stopping time θ := inf{t > t̃0 : µ̄(t) ∈ [πm
0 ]ρ1}, if c∗ > cm−1(π

m
0 ) and θ = t2 otherwise.

By the strong Markov property,

Pt2,ν2(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

≥ Et2,ν2(1{θ≤t̃1} · Eθ,µ̄(θ)(1{µ̄(t+t(c
∗+δ)/c)∈[L̃0]ρ1}

))
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≥ Pt2,ν2(θ ≤ t̃1) inf
t̃0≤t3≤t̃1,ν3∈[πm

0 ]ρ1

Pt3,ν3(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1). (2.28)

We first estimate Pt2,ν2(θ ≤ t̃1) when c∗ > cm−1(π
m
0 ) (if this is not the case, then by definition

of θ, we have Pt2,ν2(θ ≤ t̃1) = 1) . Note that

Pt2,ν2(θ > t̃1) = Pt2,ν2(µ̄(t) /∈ [πm
0 ]ρ1 for all t̃0 ≤ t ≤ t̃1)

≤ Pt2,ν2(µ̄(t) /∈ [L]ρ1 for all t̃0 ≤ t ≤ t̃1) + Pt2,ν2(τ̄πm
0
≤ t̃1).

Lemma 2.13 implies that

Pt2,ν2(τ̄πm
0
≤ t̃1) ≤ t−δ/c

for large t and small enough ρ1 > 0. Also, with this ρ1, by using Lemma 2.15, we see that

Pt2,ν2(µ̄(t) /∈ [L]ρ1 for all t̃0 ≤ t ≤ t̃1) ≤ t−M1/c

for large t, where M1 can be chosen as large as we want. This shows that there exists ε1 > 0

such that

Pt2,ν2(θ ≤ t̃1) ≥ 1− 2t−ε1/c

uniformly for all ν2 ∈ [πm
0 ]ρ1 and large enough t. Hence, from (2.27), (2.28) and (2.24), we get

Pt1,ν1(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

≥ (1− t−M ′/c)(1− 2t−ε1/c)× inf
t2≥t̃0,

ν2∈[πm
0 ]ρ1

πm
0 ∈Am

δ̃∈[δ/4,δ]

Pt2,ν2(µ̄(t2 + t
(cm−1(πm

0 )+δ̃)/c
2 ) ∈ [L̃0]ρ1)

and therefore, for some ε > 0, we have

inf
t≤t1≤t+T ∗,
ν1∈[L]ρ1

Pt1,ν1(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1)

≥ (1− t−ε/c)× inf
t2≥t̃0

ν2∈[πm
0 ]ρ1

πm
0 ∈Am

δ̃∈[δ/4,δ]

Pt2,ν2(µ̄(t2 + t
(cm−1(πm

0 )+δ̃)/c
2 ) ∈ [L̃0]ρ1).
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We now focus on the second term. This probability inside the infimum can be lower bounded

using similar steps above starting with (2.28); instead of the random variable θ, we consider

the hitting time of a suitable (m− 1)-cycle. Continuing this procedure m times, we eventually

reach A0. Therefore, we can show

inf
t≤t1≤t+T ∗

ν1∈[L̃0]ρ1

Pt1,ν1(µ̄(t+ t(c
∗+δ)/c) ∈ [L̃0]ρ1) ≥ (1− t−ε/c)m+1,

and the result now follows from (2.23).

We now show that the conclusion of Theorem 2.4 fails if we choose c < c∗. Since L̃0 ̸= L,

we have c∗ > 0. Given c < c∗, let πk ∈ Lk be such that V̂ (πk) ≤ c < Ṽ (πk); this is possible

from the definition of c∗. Note that L̃0 ∩ πk = ∅. The below result shows that the exit time

from a neighbourhood of πk is infinite with positive probability, and this in particular implies

that (2.22) fails.

Proposition 2.1. Let πk be a k-cycle such that V̂ (πk) ≤ c < Ṽ (πk). There exist ε ∈ (0, Ṽ (πk)−
c), c′ > 0, ρ1 > 0, and t∗ > 0 such that for all ν ∈ [πk]ρ1 ∩MNt

1 (Z) and t ≥ t∗, we have

Pt,ν(τ̄πk < ∞) ≤ c′t1−(Ṽ (πk)−ε)/c.

Proof. We proceed via the steps in Hwang and Sheu [44]. Let T0 = t, and define, for all n ≥ 1,

Tn+1 := Tn + T V̂ (πk)/c
n , and

T ∗
n+1 := Tn +

1

2
T V̂ (πk)/c
n .

(In the above definitions, we assume that V̂ (πk) > 0; if this is not the case, then we replace

T
V̂ (πk)/c
n in the above definitions by a sufficiently large constant, and the following arguments

will go through.) We have, for any r ≥ 1,

Pt,ν(τ̄πk < Tr) = Pt,ν(τ̄πk < Tr−1) + Pt,ν(Tr−1 ≤ τ̄πk < Tr). (2.29)

To bound the second term, define the stopping time θ := inf{t > T ∗
r−1 : µ̄(t) ∈ [L]ρ1} where ρ1

is to be chosen later. Then,

Pt,ν(Tr−1 ≤ τ̄πk < Tr) = Pt,ν(Tr−1 ≤ τ̄πk < Tr, θ ≤ T ∗
r−1 + T ∗)

+ Pt,ν(Tr−1 ≤ τ̄πk < Tr, θ > T ∗
r−1 + T ∗), (2.30)
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where T ∗ is such that the second term above is upper bounded by T ∗−M/c

r−1 for some M > 0 to

be chosen later (this is possible by Lemma 2.15). To bound the first term, note that

Pt,ν(Tr−1 ≤τ̄πk < Tr, θ ≤ T ∗
r−1 + T ∗)

≤ Pt,ν(θ ≤ τ̄πk < Tr, θ ≤ T ∗
r−1 + T ∗)

≤ Et,ν(1{µ̄(θ)∈[πk]ρ1 ,θ≤T ∗
r−1+T ∗} · Eθ,µ̄(θ)(1{τ̄

πk<Tr}))

≤ T
∗−(Ṽ (πk)−V̂ (πk)−ε)/c
r−1

holds for sufficiently large t and small enough ρ1. Here, the second inequality follows by the

strong Markov property and the third from Lemma 2.14. Choose M sufficiently large, so

that (2.29), (2.30) and the above implies

Pt,ν(τ̄πk < Tr) ≤ Pt,ν(τ̄πk < Tr−1) + 2T ∗−(Ṽ (πk)−V̂ (πk)−ε)/c

r−1 .

Therefore, we have

Pt,ν(τ̄πk < Tr) ≤ 2
r∑

n=0

T ∗−(Ṽ (πk)−V̂ (πk)−ε)/c

n

≤ c′1

r∑
n=0

T−(Ṽ (πk)−V̂ (πk)−ε)/c
n

= c′1

r∑
n=0

T−(Ṽ (πk)−ε)/c
n (Tn+1 − Tn)

≤ c′1

∫ Tr

t

u−(Ṽ (πk)−ε)/cdu,

where c′1 is a positive constant. Choose ε such that Ṽ (πk)− ε > c so that the above implies

Pt,ν(τ̄πk < Tr) ≤ c′1

∫ ∞

t

u−(Ṽ (πk)−ε)/cdu

≤ c′t1−(Ṽ (πk)−ε)/c,

where c′ is a positive constant. Let r → ∞, and the result follows since Tr → ∞.

Example 2.3. We now provide an example where we can choose the transition rates of the

particles so as to minimise a given “nice” function U on M1(Z). Let (Z, EZ) denote the

complete graph on Z. Suppose that for every ξ ∈ M1(Z) and (z, z′) ∈ EZ with ξ(z) > 0, the
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limit

∇z,z′U(ξ) = lim
N→∞

U
(
ξ +

δz′−δz
N

)
− U(ξ)

1/N

exists, and is bounded and continuous. Further, assume that the above convergence is uniform

over ξ. Consider the transition rates

λ
(N)
z,z′ (ξ) =

exp

{
−N

(
U

(
ξ +

δz′−δz
N

)
− U(ξ)

)}
1 + exp

{
−N

(
U

(
ξ +

δz′−δz
N

)
− U(ξ)

)} , ξ ∈ MN
1 (Z), ξ(z) > 0.

Then, by verifying the detailed balance condition, it is straightforward to show that the prob-

ability measure

1

cN
exp{−NU(zN)}, zN ∈ ZN ,

is invariant for the N -particle evolution, where cN =
∑

zN∈ZN exp{−NU(zN)}. Let H :

M1(Z) → [0,∞) be the Shannon entropy defined by H(ξ) = −
∑

z∈Z ξ(z) log ξ(z), with the

convention that 0 log 0 = 0. Since the number of zN ∈ ZN such that zN = ξ is between

(N + 1)−|Z| exp{NH(ξ)} and exp{NH(ξ)} [29, Lemma 2.1.8], ℘N satisfies

(N + 1)−|Z|

cN
exp{−N(U(ξ)−H(ξ))} ≤ ℘N(ξ) ≤ 1

cN
exp{−N(U(ξ)−H(ξ))}.

Therefore, {℘N} satisfies the LDP with rate function U − H. Noting that λ
(N)
z,z′ (ξ) converges

to λz,z′(ξ) =
exp{−∇z,z′U(ξ)}

1+exp{−∇z,z′U(ξ)} as N → ∞ uniformly over ξ, the empirical measure process µN

satisfies the process-level LDP, see [50]. Therefore, by modifying U to cU , c > 0, the particle

addition algorithm could ensure convergence to a small neighbourhood of a global minimum of

cU−H. By choosing c large enough, we can ensure convergence to a neighbourhood of a global

minimum of U .
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Chapter 3

Process-Level Large Deviations of Two

Time Scale Mean-Field Models

3.1 The setting and main results

3.1.1 Introduction

Let X ,Y be finite sets and (X , EX ) and (Y , EY) be directed graphs on X and Y respectively. Let

M1(X ) denote the space of probability measures on X . For each N ≥ 1, we consider Markov

processes with infinitesimal generators acting on functions f on MN
1 (X )× Y of the form

∑
(x,x′)∈EX

Nξ(x)λx,x′(ξ, y)

[
f

(
ξ +

δx′

N
− δx

N
, y

)
− f(ξ, y)

]
+N

∑
y′:(y,y′)∈EY

(f(ξ, y′)− f(ξ, y))γy,y′(ξ), ξ ∈ MN
1 (X ) and y ∈ Y ;

hereMN
1 (X ) ⊂ M1(X ) denotes the set of probability measures on X that can arise as empirical

measures ofN -particle configurations on XN , λx,x′(·, y) : M1(X ) → R+, (x, x
′) ∈ EX and y ∈ Y ,

and γy,y′ : M1(X ) → R+, (y, y
′) ∈ EY , are given functions. Such processes arise in the context of

weakly interacting Markovian mean-field particle systems in a fast varying environment where

the empirical measure of the particle system evolves in the slow time scale and the environment

process evolves in the fast time scale. An important feature of such processes is that they

are “fully coupled”, i.e., the evolution of the empirical measure depends on the state of the

environment, and the environment itself changes its state depending on the empirical measure

of the particle system. This chapter establishes a process-level large deviation principle (LDP)
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for the joint law of the empirical measure process and the occupation measure of the fast

environment for such fully coupled two time scale mean-field models (see Section 3.1.3 for the

precise mathematical model and Theorem 3.1 for the statement of the main result).

Our study of the LDP for such a two time scale mean-field model is motivated by the

metastability phenomenon in networked systems. Many networked systems that arise in practice

can be modelled using a two time scale mean-field model; see Section 1.1.2 for details of a

wireless local area network. In such networks, there could be multiple seemingly “stable points

of operation”, or metastable points. Some of these may be desirable but some others undesirable

in terms of some performance metrics. One is often interested in understanding the following

metastable phenomena: (i) the mean time spent by the network near an operating point, (ii)

the mean time required for transiting from one stable operating point to another, (iii) the

mean time for the system to be sufficiently close to stationarity, etc. The process-level large

deviations result established in this chapter, along with the results of Chapter 2, helps to answer

such questions on the large time behaviour of these systems when the number of particles N is

large.

The above two time scale mean-field model is an example of a stochastic process with

time scale separation where a certain component of the process evolves in the slow time scale

(i.e. O(1)-change in a given O(1) time duration) and another component evolves in the fast

time scale (i.e. Ω(N)-change in a given O(1) time duration). Such processes that evolve on

multiple time scales have been well studied in the past, and it is known that, under mild

conditions, they exhibit the “averaging principle”: when the time scale separation N becomes

large, the slow component tracks the solution to a certain dynamical system whose driving

function is “averaged” over the stationary behaviour of the fast component. In his seminal work,

Khasminskii [47] first proved the averaging principle for two time scale diffusions. Freidlin and

Wentzell [37, Chapter 7, Section 9] studied the averaging phenomenon in a fully coupled system

of diffusions where both the drift and the diffusion coefficients of the slow component depend

on the fast component and vice-versa. Their proof is based on discretisation arguments. The

averaging phenomenon has also been studied in the context of jump processes with applications

to performance analysis of various computer communication systems and queueing networks –

Castiel et al. [20] studied a carrier sense multiple access algorithm in the context of wireless

networks, Bordenave et al. [14] studied performance analysis of wireless local area networks,

Hunt and Kurtz [42] studied scaling limits of loss networks, Hunt and Laws [43] studied analysis

of trunk reservation policy in the context of loss networks; also see Kelly [46] and the references

therein for other works on loss networks in the two time scale framework. While the above works

on jump processes study the averaging principle in the large-N limit, this chapter focuses on
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the process-level large deviations from the large-N limit.

Various authors have studied process-level large deviations of diffusion processes evolving

on multiple time scales under various assumptions – see Freidlin and Wentzell [37], Vereten-

nikov [87, 88], Liptser [57], Puhalskii [73] and the references therein. Liptser [57] established the

large deviation principle for the joint law of the slow process and the occupation measure of the

fast process for one-dimensional diffusions when the fast process does not depend on the slow

variable. More recently, Puhalskii [73] extended this for multidimensional diffusions when the

slow and fast processes are fully coupled. His approach is based on the method of stochastic

exponentials for large deviations [70], where one identifies a suitable exponential martingale

associated with the process and characterises the rate function in terms of this exponential

martingale. In identifying the rate function, the main ingredient in the proof is to study a

certain variational problem and show certain continuity property of its solution.

In this chapter, our proof of the process-level large deviation result is based on the method

of stochastic exponentials, see Puhalskii [70, 73], but the main difficulty lies in extending the

approach of Puhalskii [73] to our two time scale mean-field model with jumps. In particular,

our setting requires us to study certain variational problems in an Orlicz space, instead of the

usual L2 space in the context of diffusions, to characterise the rate function; see Theorem 3.6

and Theorem 3.8. While Puhalskii [73] uses tools from the theory of elliptic partial differen-

tial equations for the characterisation of the rate function, we use tools from convex analysis

and parametric continuity of optimisation problems. Also, our mean-field setting makes the

solutions to these variational problems blow up near the boundary of the state space, and one

of the main novelties of our work is the methodology to obtain a characterisation of the rate

function in such cases via suitable approximations – see Section 3.6.

Other works in the two time scale regime include Budhiraja et al. [18] who studied the case

where the slow process is a diffusion and the fast process is a Markov chain on a finite set; their

proof is based on the weak convergence approach to large deviations where one establishes

the LDP by studying certain controlled versions of the processes. Kumar and Popovic [53]

established the LDP for two time scale jump-diffusions under some general conditions via

convergence of nonlinear semigroups, but their approach requires verification of the comparison

principle for a certain nonlinear operator. While this is a possible alternative approach for

the mean-field problem under consideration, we have used the more probabilistic stochastic

exponentials approach.

Let us also mention some works on large deviations of mean-field models that do not involve

the fast environment. Dawson and Gärtner [26] established the process-level large deviations

of interacting diffusions of mean-field type where each particle evolves as a diffusion process
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with coefficients that depend on the other particles via the empirical measure of the states of

all the particles. Léonard [56, 55] extended this to the case of jump processes. Our work can be

viewed as an extension of Léonard [55] to the case of finite-state mean-field interacting particle

systems with a fully coupled fast varying environment. In the stationary regime, Borkar and

Sundaresan [15] studied the large deviations of the stationary measure of finite-state mean-

field interacting particle systems using tools from Freidlin and Wentzell [37, Chapter 6]. Our

results in this chapter, along with the results of Chapter 2, can be used to study the large time

behaviour and metastability in two time scale mean-field models; see Section 3.1.4.2.

The rest of this chapter is organised as follows. In the rest of this section, we describe our

fully coupled two time scale mean-field model and state our main result and its implications.

The proof of the main result is carried out in Sections 3.2–3.7. Section 3.2 establishes the expo-

nential tightness of the joint law of the empirical measure process and the occupation measure

process of the fast environment. In Section 3.3, we define a certain exponential martingale and

show a necessary condition that holds for every subsequential rate function. In Section 3.4,

we define our candidate rate function using the above exponential martingale and study its

relevant properties. In Section 3.5, we obtain a characterisation of subsequential rate functions

for sufficiently regular elements in the space and Section 3.6 extends this to the whole space

using certain approximation arguments. Finally we complete the proof of the main result in

Section 3.7.

3.1.2 Notation

We summarise the frequently used notation in this chapter; previously used notation from

Chapter 2 are also recalled here for completeness. Let ⟨·, ·⟩ denote the inner product and

∥ · ∥ denote the norm on Euclidean spaces. Given a complete separable metric space S, let
B(S) denote the space of bounded Borel-measurable functions on S equipped with the uniform

topology. Let M(S) denote the space of finite measures on S equipped with the topology

of weak convergence. Let M1(S) denote the space of probability measures on S equipped

with the Lévy-Prohorov metric (which generates the topology of weak convergence). (If S is

a finite set, then M1(S) can be viewed as an (|S| − 1)-dimensional subset of the Euclidean

space R|S|; in this case, for ν ∈ M1(S), we shall denote the density of ν with respect to the

counting measure on S by ν). Given N ∈ N, MN
1 (S) ⊂ M1(S) denotes the set of probability

measures that can arise as empirical measures of N points on S. Given T > 0, let D([0, T ],S)
(resp. D(R+,S)) denote the space of càdlàg functions on [0, T ] (resp. R+) equipped with the

Skorohod-J1 topology (see, for example, Ethier and Kurtz [34, Chapter 3]). Similarly, given a
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finite set Y , D↑([0, T ],M(Y)) ⊂ D([0, T ],M(Y)) denotes the space of càdlàg functions θ on

[0, T ] such that for each 0 ≤ s ≤ t ≤ T , θt − θs is an element of M(Y) and θt(Y) = t. This

equipped with its subspace topology is a complete and separable metric space, and is closed in

D([0, T ],M(Y)). If X is an element of D([0, T ],S), D([0,∞),S) or D↑([0, T ],M(Y)), let Xt

and X(t) denote the coordinate projection of X at time t.

Recall the functions τ and τ ∗ defined in Section 2.2, i.e., τ(u) := eu − u− 1, u ∈ R, and

τ ∗(u) :=


+∞ if u < −1

1 if u = −1

(u+ 1) log(u+ 1)− u if u > −1.

Given a complete separable metric space S and a finite measure ϑ on S, let Lτ (S, ϑ) and

Lτ∗(S, ϑ) denote the Orlicz spaces corresponding to the functions τ and τ ∗, respectively (see,

for example, Rao and Ren [76, Chapter 3] for an introduction to Orlicz spaces). The Orlicz

norms on these spaces are denoted by ∥ · ∥Lτ (S,ϑ) and ∥ · ∥Lτ∗ (S,ϑ), respectively. Given a directed

and connected graph (V,E) and ∆ = (u, v) ∈ E, let u + ∆ denote v. Given a function

f on [0, T ] × S × V , let Df denote the function on [0, T ] × S × V × E defined as follows:

if (t, s, u,∆) ∈ [0, T ] × S × V × E is such that the edge ∆ is an outgoing edge from the

vertex u, then define f(t, s, u,∆) = f(t, s, v) − f(t, s, u) where v = u + ∆; otherwise define

f(t, s, u,∆) = 0. Given a subset W of a Euclidean space and T > 0, let C1,1([0, T ] ×W × S)
(resp. C∞([0, T ]×W ×S)) denote the space of functions on f(t, u, s), (t, u, s) ∈ [0, T ]×W ×S,
that is continuously differentiable (resp. infinitely differentiable) in both t and u.

We finally recall the definition of a large deviation principle from Definition 1.1. Let (S, d0)
be a metric space. We say that a sequence {XN , N ≥ 1} of S-valued random variables defined

on a probability space (Ω,F , P ) satisfies the large deviation principle (LDP) with rate function

I : S → [0,+∞] if

• (Compactness of level sets). For any s ≥ 0, Φ(s) := {x ∈ S : I(x) ≤ s} is a compact

subset of S;

• (LDP lower bound). For any γ > 0, δ > 0, and x ∈ S, there exists N0 ≥ 1 such that

P (d0(X
N , x) < δ) ≥ exp{−N(I(x) + γ)}

for any N ≥ N0;
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• (LDP upper bound). For any γ > 0, δ > 0, and s > 0, there exists N0 ≥ 1 such that

P (d0(X
N ,Φ(s)) ≥ δ) ≤ exp{−N(s− γ)}

for any N ≥ N0.

We say that I : S → [0,+∞] is a subsequential rate function for the family {XN , N ≥ 1} if

there exists a subsequence {Nk, k ≥ 1} of N such that the sequence {XNk , k ≥ 1} satisfies the

large deviation principle with rate function I.

3.1.3 System model

We describe our model of the mean-field interacting particle system in a fast environment.

Let there be N particles and an environment. There is a state associated with each particle

as well as the environment at all times; the particle states come from a finite set X and the

environment state comes from a finite set Y . The state of the nth particle at time t is denoted

by XN
n (t) ∈ X , and the state of the environment at time t is denoted by Y N(t) ∈ Y . To describe

the evolution of the states of the particles, we consider a directed graph (X , EX ) on the vertex

set X with the interpretation that whenever (x, x′) ∈ EX , a particle at state x can transit to

state x′. Similarly, to describe the evolution of the environment, we consider a directed graph

(Y , EY); (y, y′) ∈ EY implies that the environment can transit from state y to state y′.

To describe the particle transitions, we define, for each y ∈ Y and (x, x′) ∈ EX , a function

λx,x′(·, y) : M1(X ) → R+, and for each y ∈ Y , we consider the generator QN
y acting on functions

on XN by

QN
y f(x

N) =
N∑

n=1

∑
x′
n:(xn,x′

n)∈EX

λxn,x′
n
(xN , y)(f(xN

n,xn,x′
n
)− f(xN)), xN ∈ XN ,

where xN := 1
N

∑N
n=1 δxn denotes the empirical measure associated with the configuration xN ,

and xN
n,xn,x′

n
denotes the resultant configuration of particles when the nth particles changes its

state from xn to x′
n in xN . To describe the transitions of the environment, for each (y, y′) ∈ Y ,

we define a function γy,y′(·) : M1(X ) → R+, and for each ξ ∈ M1(X ), we consider the generator

Lξ acting on functions on Y by

Lξg(y) =
∑

y′:(y,y′)∈EY

(g(y′)− g(y))γy,y′(ξ), y ∈ Y .
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Finally, we consider the generator ΨN acting on functions f on XN × Y by

ΨNf(xN , y) = QN
y f(·, y)(xN) +NL

xNf(x
N , ·)(y), (xN , y) ∈ XN × Y ,

where QN
y f(·, y)(xN) (resp. L

xNf(x
N , ·)(y)) indicates that the operator QN

y (resp. L
xN ) acts

on the first variable (resp. second variable) of f and the resultant function is evaluated at xN

(resp. y).

We make the following assumptions on the particle system:

(C1) The graph (X , EX ) is irreducible;

(C2) For each y ∈ Y and (x, x′) ∈ EX , the function λx,x′(·, y) is Lipschitz continuous on M1(X )

and infξ∈M1(X ) λx,x′(ξ, y) > 0;

and the following assumptions on the environment:

(D1) The graph (Y , EY) is irreducible;

(D2) For each (y, y′) ∈ EY , the function γy,y′(·) is continuous onM1(X ) and infξ∈M1(X ) γy,y′(ξ) >

0.

As a consequence of the assumptions (C2) and (D2), we see that the transition rates of the

particles as well as that of the environment are bounded, i.e.,

sup
ξ∈M1(X )

λx,x′(ξ, y) < +∞∀ (x, x′) ∈ EX and ∀ y ∈ Y ,

and

sup
ξ∈M1(X )

γy,y′(ξ) < +∞∀ (y, y′) ∈ EY ,

and hence the D([0,∞),XN × Y)-valued martingale problem for ΨN is well-posed (see, for

example, Ethier and Kurtz [34, Section 4.1, Exercise 15]). Therefore, given an initial config-

uration of the particles (XN
n (0), 1 ≤ n ≤ N) ∈ XN and an initial state of the environment

Y N(0) ∈ Y , we have a Markov process {((XN
n (t), 1 ≤ n ≤ N), Y N(t)), t ≥ 0} whose sample

paths are elements of D([0,∞),XN × Y).
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To describe the process {((XN
n (t), 1 ≤ n ≤ N), Y N(t)), t ≥ 0} in words, consider the

mapping

{((XN
n (t), 1 ≤ n ≤ N),Y N(t)), t ≥ 0} 7→

{
1

N

N∑
n=1

δXN
n (t), t ≥ 0

}
=: {µN(t), t ≥ 0} ∈ D([0,∞),MN

1 (X ))

that takes the process {((XN
n (t), 1 ≤ n ≤ N), Y N(t)), t ≥ 0} and maps it to the empirical

measure process {µN(t), t ≥ 0}. Note that, if the environment were frozen to be y, then µN is

Markov with infinitesimal generator

ΦN
y f(ξ) =

∑
(x,x′)∈EX

Nξ(x)λx,x′(ξ, y)

[
f

(
ξ +

δx′

N
− δx

N

)
− f(ξ)

]
, ξ ∈ MN

1 (X ).

We see that a particle in state x at time tmakes a transition to state x′ at rate λx,x′(µN(t), Y N(t))

independent of everything else. Similarly, the environment makes a transition from state y to

y′ at time t at rate Nγy,y′(µ
N(t)) independent of everything else. Thus, the evolution of each

particle depends on the empirical measure of the states of all the particles and the environment,

and the evolution of the environment depends on the empirical measure of the states of all the

particles. Note that the factor N in the second term of the generator ΨN indicates that the

process Y N makes O(N) many transitions while each particle makes O(1) transitions in a given

O(1) duration of time. Therefore, we have a “fully coupled” system where the particles evolve

in a fast varying environment. Also, the empirical measure process µN makes O(N) transitions

over a given duration of time, but each of those transitions are of size O(1/N) on the probability

simplex M1(X ). We shall refer to µN as the slow process and Y N as the fast process.

Remark 3.1. Throughout the chapter, we assume that all stochastic processes are defined on a

complete filtered probability space (Ω,F , (Ft)t≥0, P ). We denote integration with respect to P

by E .

Fix T > 0. We now describe the typical behaviour of our two time scale mean-field system

for large N over the time duration [0, T ]. Towards this, we define the occupation measure of

the fast process Y N by

θN(t) :=

∫ t

0

1{Y N (s)∈·}ds, t ∈ [0, T ].

Note that θN ∈ D↑([0, T ],M(Y)), θNt (Y) = t and we can view θN as a measure on [0, T ] × Y .
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For a fixed empirical measure of the particles ξ ∈ M1(X ), assumptions (D1) and (D2) imply

that there exists a unique invariant probability measure for the Markov process on Y with

infinitesimal generator Lξ (we denote this by πξ). Therefore, when the empirical measure at

time t is at a fixed state µt, since the fast process Y N makes O(N) transitions, we expect

that the occupation measure of Y N for large N becomes “close” to πµt , the unique invariant

probability measure associated with Lµt . Due to this ergodic behaviour of the fast process, we

anticipate that a particle in state x at time t moves to state x′, where (x, x′) ∈ EX , at rate∫
Y λx,x′(µt, y)πµt(dy), i.e., the average of λx,x′(µt, ·) over πµt (for any ξ ∈ M1(X ), (x, x′) ∈ EX
and m ∈ M1(Y), we define λ̄x,x′(ξ,m) :=

∫
Y λx,x′(ξ, y)m(dy)).

More precisely, for large enough N , we anticipate the following averaging principle for the

empirical measure process µN . If we assume that the initial conditions µN(0) → ν weakly for

some deterministic element ν ∈ M1(X ), then we anticipate that µN converges in probability,

in D([0, T ],M1(X )), to the solution to the McKean-Vlasov ODE

µ̇t = Λ̄∗
µt,πµt

µt, t ≥ 0, µ0 = ν, (3.1)

where Λ̄µt,πµt
denotes the |X |×|X | rate matrix of the slow process when the empirical measure is

µt and the occupation measure of the fast process is πµt , i.e., Λ̄µt,πµt
(x, x′) = λ̄x,x′(µt, πµt) when

(x, x′) ∈ EX , Λ̄µt,πµt
(x, x′) = 0 when (x, x′) /∈ EX , Λ̄µt,πµt

(x, x) = −
∑

x′ ̸=x λ̄x,x′(µt, πµt), and

Λ̄∗
µt,πµt

denotes its transpose. Note that the above ODE is well-posed, thanks to the Lipschitz

assumption on the transition rates (C2). See Bordenave et al. [14] for the study of averaging

phenomena of a slightly general two time scale model in which each particle has a fast varying

environment associated with it.

3.1.4 Main result

The result of this chapter is on the large deviations of {(µN , θN), N ≥ 1}, the joint empiri-

cal measure process associated with the particle system and the occupation measure process

associated with the environment Y N , on D([0, T ],M1(X ))×D↑([0, T ],M(Y)).

Theorem 3.1. Assume (C1), (C2), (D1), (D2), and fix T > 0. Suppose that {µN(0), N ≥ 1}
satisfies the LDP on M1(X ) with rate function I0. Then the sequence {((µN(t), θN(t)), t ∈
[0, T ]), N ≥ 1} satisfies the LDP on D([0, T ],M1(X ))×D↑([0, T ],M(Y)) with rate function

I(µ, θ) := I0(µ(0)) + J(µ, θ),
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where J is defined by

J(µ, θ) :=

∫
[0,T ]

{
sup
α∈RX

(〈
α, (µ̇t − Λ̄∗

µt,mt
µt)
〉

−
∫
X×EX

τ(Dα(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)

)
+ sup

g∈B(Y)

∫
Y

(
−Lµtg(y)

−
∫
EY

τ(Dg(y,∆))γy,y+d∆(µt)

)
mt(dy)

}
dt (3.2)

whenever the mapping [0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely continuous and θ, when viewed as

a measure on [0, T ]× Y, admits the representation θ(dydt) = mt(dy)dt for some mt ∈ M1(Y)

for almost all t ∈ [0, T ], and J(µ, θ) = +∞ otherwise.

Note that our rate function consists of two parts – one corresponding to the empirical

measure process µN and the other corresponding to the occupation measure of the fast process

Y N . The form of the first part of the rate function in (3.2) corresponding to the empirical

measure process µN appears in the literature on large deviations of mean-field models (see

Léonard [55, Theorem 3.3], Djehiche and Kaj [30, Theorem 1]). The form of the second part

is related to the rate function that appears in the study of occupation measure of Markov

processes (see Donsker and Varadhan [31, Theorem 1]). Here, the canonical form of the rate

function is
∫
[0,T ]

suph>0

∫
Y −Lµth(y)

h(y)
mt(dy)dt and this form of the second part of our rate function

in (3.2) can be obtained by taking supremum over functions of the form eg, g ∈ B(Y). We

see that the first part of the rate function corresponding to the empirical measure process µN

has parameters of the mean-field model “averaged” by the fast variable. Further the second

part corresponding to the occupation measure of the fast process has parameters “frozen” at

the current value of the slow variable. The form of our rate function is similar in spirit to that

obtained by Puhalskii [73] in the case of coupled diffusions.

Note that, when µ is the solution to the McKean-Vlasov equation (3.1) starting at µ(0) and

θ, when viewed as a measure on [0, T ] × Y , is given by θ(dydt) = πµt(dy)dt where πµt is the

unique invariant probability measure associated with the infinitesimal generator Lµt , it is easy

to see that the suprema in (3.2) are attained at the identically 0 functions α ≡ 0 and g ≡ 0 and

hence J(µ, θ) = 0. Therefore, we recover the typical behaviour of our fully coupled system – at

each time t > 0, the empirical measure process µN tracks the solution to the McKean-Vlasov

equation µt starting at µ(0) and the occupation measure of the fast process θN tracks the

invariant probability measure of the fast process Y N when the empirical measure is frozen at
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µt. Our result on the large deviations of the joint empirical measure process and the occupation

measure of the fast process {(µN , θN)} enables us to estimate the probabilities of two kinds of

deviations from the typical behaviour – one where, for a given µ, the occupation measure of

the fast process deviates from its typical behaviour (which at time t is πµt(dy)dt) and the other

where µ deviates from its typical behaviour (which is the solution to (3.1) starting at µ(0)).

We now provide an outline of the proof of Theorem 3.1. Our proof is broadly built upon

the methodology of stochastic exponentials for large deviations by Puhalskii [70, 71, 73], where

one shows the large deviation principle by first obtaining an equation for a subsequential rate

function in terms of a suitable exponential martingale and then obtaining a characterisation of

this subsequential rate function. Towards this, we first show that the sequence {(µN , θN), N ≥
1} is exponentially tight in D([0, T ],M1(X )) × D↑([0, T ],M(Y)) (see Theorem 3.4); this is

shown using standard martingale arguments and Doob’s inequality. Exponential tightness of

the sequence {(µN , θN), N ≥ 1} implies that there exists a subsequence {Nk, k ≥ 1} of N
such that the family {(µNk , θNk), k ≥ 1} satisfies the LDP (see, for example, Dembo and

Zeitouni [29, Lemma 4.1.23]); let Ĩ denote the rate function that governs the LDP for the

family {(µNk , θNk), k ≥ 1}. In Sections 3.3-3.6, we obtain a characterisation of Ĩ when Ĩ is

such that, for some ν ∈ M1(X ), Ĩ(µ, θ) = +∞ unless µ0 = ν; specifically we show that Ĩ(µ, θ)

is given by the right hand side of (3.2). In some more detail, in Section 3.3, we define an

exponential martingale associated with the Markov process (µN , Y N) for a class of functions

α : [0, T ] × M1(X ) → RX and g : [0, T ] × M1(X ) × Y → R with certain properties, and we

obtain an equation that the rate function Ĩ must satisfy in terms of this exponential martingale

(see Theorem 3.5). In Section 3.4, we define our candidate rate function I∗ in terms of this

exponential martingale as a variational problem over functions α and g, and we then show

that I∗ coincides with the RHS of (3.2), and provide a nonvariational expression for I∗ using

elements from suitable Orlicz spaces (see Theorem 3.6). In Section 3.5, using the properties

of the solution to the variational problem established in Section 3.4 and an extension of the

equation of Ĩ to a larger class of functions α and g, we are able to obtain a characterisation

of the rate function Ĩ for sufficiently regular elements in D([0, T ],M1(X ))×D↑([0, T ],M(Y))

(see Theorem 3.8). In Section 3.6, we extend the above characterisation of Ĩ to the whole

space D([0, T ],M1(X )) × D↑([0, T ],M(Y)) via certain approximation arguments. We finally

complete the proof of Theorem 3.1 in Section 3.7, by removing the restriction that, for some

ν ∈ M1(X ), Ĩ(µ, θ) = +∞ unless µ0 = ν.

Our setting of mean-field interaction with jumps introduces some difficulties in characterising

a subsequential rate function. One of them is in obtaining regularity properties of the solution

to the variational problem appearing in the definition of J(µ, θ) in (3.2) when (µ, θ) possesses
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some good properties. In the recent work of Puhalskii [73] on large deviations of fully coupled

diffusions, the author uses tools from the theory of elliptic partial differential equations for

this purpose whereas we resort to tools from convex analysis (Léonard [56, Sections 4-6]) and

parametric continuity of optimisation problems (Sundaram [82, Chapter 9]) – see Theorem 3.6

and Theorem 3.8. Also, unlike in the case of Gaussian noise in Puhalskii [73], our Poissonian

noise prevents us from obtaining an explicit form of the solution to the variational problem

appearing in the rate function (3.2). Yet another difficulty is in obtaining a characterisation

of Ĩ(µ, θ) when the path µ hits the boundary of M1(X ). In such cases, the solution to the

variational problem that appears in (3.2) blows up near the boundary and hence the condition

on Ĩ established in Theorem 3.7 cannot be directly used. We demonstrate how to approximate

(µ, θ) via a sequence of regular elements {(µi, θi)}i≥1 so that the solution to the variational

problem in J(µi, θi) is well-behaved. We can then use the conclusion of Theorem 3.7 on the

above sequence and show that Ĩ(µi, θi) → Ĩ(µ, θ) as i → ∞; see Theorem 3.9.

3.1.4.1 Marginal µN

The above result on large deviations of the joint law of the empirical measure process of the

particles and the occupation measure of the fast process enables us to easily obtain large

deviations of the empirical measure process µN by using the contraction principle (see, for

example, Dembo and Zeitouni [29, Theorem 4.2.1]).

Corollary 3.1. Assume (C1), (C2), (D1), (D2), and fix T > 0. Suppose that {µN(0), N ≥ 1}
satisfies the LDP on M1(X ) with rate function I0. Then {µN , N ≥ 1} satisfies the LDP on

D([0, T ],M1(X )) with rate function JT defined as follows. If [0, T ] ∋ t 7→ µt is absolutely

continuous, then

JT (µ) = I0(µ0) +

∫
[0,T ]

{
sup
α∈RX

(
⟨α, µ̇t⟩ − sup

m∈M1(Y)

[
⟨α, Λ̄∗

µt,mµt⟩

+

∫
X×EX

τ(Dα(x,∆))λ̄x,x+d∆(µt,m)µt(dx)

)
− sup

g∈B(Y)

∫
Y

(
−Lµtg(y)−

∫
EY

τ(Dg(y,∆))γy,y+d∆(µt)

)
m(dy)

]}
dt,

where θ, when viewed as a measure on [0, T ]×Y, admits the representation θ(dydt) = mt(dy)dt

for some mt ∈ M1(Y) for almost all t ∈ [0, T ], and JT (µ) = +∞ otherwise.
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3.1.4.2 Large time behaviour

Using the result on the finite duration LDP for the process {µN , N ≥ 1} in Corollary 3.1, we

can employ the tools of Freidlin and Wentzell [37, Chapter 6] and Hwang and Sheu [44] to

study the large time behaviour of the process µN . The programme to understand the large

time behaviour is carried out in Section 2.3. The two crucial properties needed to establish the

large time behaviour of µN are: (i) the continuity of the Freidlin-Wentzell quasipotential (see

Section 2.3 for its definition) and (ii) uniform large deviations of µN , uniformly with respect

to the initial condition µN(0) lying in a given closed set. One can show that the Freidlin-

Wentzell quasipotential is continuous on M1(X ) × M1(X ) by constructing constant velocity

trajectories between any two given points in M1(X ) and estimating the corresponding JT for

that path; see Borkar and Sundaresan [15, Lemma 3.4]. Since the space M1(X ) is compact,

one can also establish uniform large deviation estimates, see Corollary 2.1. Using the above

two properties and the fact that (µN , Y N) is strong Markov, one can establish results on the

large time behaviour of µN such as (i) the mean exit time from a neighbourhood of an ω-limit

set of (3.1), (ii) the probability of reaching a given ω-limit set starting from another, etc.

3.2 Exponential tightness

In this section, we prove the exponential tightness of the sequence {((µN(t), θN(t)), t ∈ [0, T ]), N ≥
1} in D([0, T ],M1(X )) × D↑([0, T ],M(Y)). Towards this, we shall use the following results

(Theorems 3.2-3.3). The proof of these results are standard and will be omitted here (see Feng

and Kurtz [36, Theorem 4.4] and Puhalskii [70, Theorem B]).

Theorem 3.2. A sequence {XN} = {XN
t , t ∈ [0, T ]} taking values in D([0, T ], S) is exponen-

tially tight if and only if

(i) for each M > 0, there exists a compact set KM ⊂ S such that

lim sup
N→∞

1

N
logP (∃t ∈ [0, T ] such that XN

t /∈ KM) ≤ −M,

(ii) there exists a family of functions F ⊂ C(S) that is closed under addition and separates

points on S such that for each f ∈ F , {f(XN)} is exponentially tight in D([0, T ],R).

See Feng and Kurtz [36, Theorem 4.4] for a proof. We also need the following sufficient

condition for exponential tightness in D([0, T ],R).
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Theorem 3.3. Let {XN} be a sequence taking values in D([0, T ],R). Suppose that

(i) we have

lim
M→∞

lim sup
N→∞

1

N
logP (∃t ∈ [0, T ] such that |XN

t | > M) = −∞,

(ii) for each ε > 0,

lim
δ↓0

lim sup
N→∞

1

N
log sup

t1∈[0,T ]

P ( sup
t2∈[t1,t1+δ]

|XN
t2
−XN

t1
| > ε) = −∞.

Then {XN} is exponentially tight in D([0, T ],R).

See Puhalskii [70, Theorem B] for a proof.

We now show the main result of this section, namely exponential tightness of the sequence

{(µN , θN), N ≥ 1}.

Theorem 3.4. The sequence of random variables {((µN(t), θN(t)), t ∈ [0, T ]), N ≥ 1} is expo-

nentially tight in D([0, T ],M1(X )) × D↑([0, T ],M(Y)), i.e., given any M > 0, there exists a

compact set KM ⊂ D([0, T ],M1(X ))×D↑([0, T ],M(Y)) such that

lim sup
N→∞

1

N
logP

(
{(µN(t), θN(t)), t ∈ [0, T ]} /∈ KM

)
≤ −M.

Proof. It suffices to show that µN and θN are individually exponentially tight inD([0, T ],M1(X ))

and D↑([0, T ],M(Y)) respectively (see, for example, Feng and Kurtz [36, Lemma 3.6]).

Consider θN . Note that, for t ∈ [0, T ], we have |θNt (Y )| ≤ t for any subset Y ⊂ Y . Therefore,

using the compact set KM = {y ∈ RY : 0 ≤ yi ≤ T ∀i} ⊂ M(Y), condition (i) of Theorem 3.2

holds. To verify condition (ii), define the collection of functions F := {f : M(Y) → R : f(θ) =

⟨α, θ⟩, α ∈ RY}. Clearly, F is closed under addition and separates points on M(Y). For any

f of the form f(θ) = ⟨α, θ⟩ for some α ∈ RY , note that, with XN
t = f(XN

t ), condition (i) of

Theorem 3.3 holds since |XN
t | ≤ tmaxi∈Y |αi|. To verify condition (ii) of Theorem 3.3, note

that, for any 0 ≤ s ≤ t ≤ T , we have |θNt (Y ) − θNs (Y )| ≤ t − s for any Y ⊂ Y and hence

|XN
t − XN

s | ≤ (t − s)maxi |αi|. Thus, by choosing a sufficiently small δ > 0, it is easy to see

that condition (ii) of Theorem 3.3 holds. This establishes the exponential tightness of {θN} in

D↑([0, T ],M(Y)).
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We now show that µN is exponentially tight in D([0, T ],M1(X )). Since for each t > 0, µN
t

takes values in a compact space, condition (i) of Theorem 3.2 holds trivially. Again, to show

condition (ii) of Theorem 3.2, we shall make use of Theorem 3.3. For this, we fix the class

of functions F := {f : M1(X ) → R+ : f(ξ) = ⟨α, ξ⟩, α ∈ RX}, which is clearly closed under

addition and separates points on M1(X ). Fix f ∈ F such that f(ξ) = ⟨α, ξ⟩ for some α ∈ RX

and let XN
t = f(µN

t ) = ⟨α, µN
t ⟩. Note that, we have |XN

t | ≤ maxx |αx| for all t ≥ 0 and N ≥ 1,

hence condition (i) of Theorem 3.3 holds. To check condition (ii), note that, for each t1 ≥ 0

and β > 1,

Mt := exp

{
N

(
βXN

t − βXN
t1
− β

∫ t

t1

ΦY N
s
f(µN

s )ds

−
∫ t

t1

∫
X×EX

τ(βDα(x,∆))λx,x+d∆(µ
N
s , Y

N
s )µN

s (dx)ds

)}
, t ≥ t1,

is an Ft-martingale (see Léonard [56, Lemma 3.3]; alternatively, this can be easily checked

using the Doléans-Dade exponential formula, see, for example, Jacod and Shiryaev [45, Chap-

ter I, Theorem 4.61]). Therefore, given ε > 0, δ > 0 and t1 > 0, we have

P

(
sup

t2∈[t1,t1+δ]

(XN
t2
−XN

t1
) > ε

)

= P

(
sup

t2∈[t1,t1+δ]

exp{Nβ(XN
t2
−XN

t1
)} > exp{Nβε}

)

= P

(
sup

t∈[t1,t1+δ]

Mt × exp

{
Nβ

∫ t

t1

ΦY N
s
f(µN

s )ds

+N

∫ t

t1

∫
X×EX

τ(βDα(x,∆))λx,x+d∆(µ
N
s , Y

N
s )µN

s (dx)ds

}
> exp{Nβε}

)
≤ P

(
sup

t∈[t1,t1+δ]

Mt exp{Nδcα,β} > exp{Nβε}

)
≤ exp{−N(βε− δcα,β)}

where cα,β is a constant depending on α and β; here the first inequality follows from the

boundedness of the transition rates which is a consequence of the Lipschitz assumption (C2),

and the second inequality follows from Doob’s martingale inequality and the fact that EMt =
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EMt1 = 1 for all t ≥ t1. Thus, we obtain

lim
δ↓0

lim sup
N→∞

1

N
log sup

t1∈[0,T ]

P

(
sup

t2∈[t1,t1+δ]

(XN
t2
−XN

t1
) > ε

)
≤ −βε,

and hence, letting β → ∞, we have

lim
δ↓0

lim sup
N→∞

1

N
log sup

t1∈[0,T ]

P

(
sup

t2∈[t1,t1+δ]

(XN
t2
−XN

t1
) > ε

)
= −∞.

We can now replace α with −α and repeat the above arguments to conclude that

lim
δ↓0

lim sup
N→∞

1

N
log sup

t1∈[0,T ]

P

(
sup

t2∈[t1,t1+δ]

|XN
t2
−XN

t1
| > ε

)
= −∞.

We have thus verified condition (ii) of Theorem 3.3 and hence it follows that {µN , N ≥ 1} is

exponentially tight in D([0, T ],M1(X )). This completes the proof of the theorem.

3.3 An equation for the subsequential rate function

Let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞] denote a subsequential rate func-

tion for the family {(µN , θN), N ≥ 1}, i.e., for some sequence {Nk, k ≥ 1} of N, the family

{(µNk , θNk), k ≥ 1} satisfies the large deviation principle with rate function Ĩ. In this section,

we obtain a condition that every such subsequential rate function must satisfy.

We start with some definitions. Given g ∈ C1,1([0, T ]×M1(X )× Y), define

V g
t (µ

N , Y N) := gt(µ
N(t), Y N(t))− g0(µ

N(0), Y N(0))−
∫ t

0

∂gs
∂s

(µN(s), Y N(s))ds

−
∫ t

0

∑
(x,x′)∈EX

[
gs

(
µN(s) +

δx′ − δx
N

, Y N(s)

)

− gs(µ
N(s), Y N(s))

]
×NµN

s (x)λx,x′(µN(s), Y N(s))ds

−
∫ t

0

∑
(x,x′)∈EX

τ

([
gs

(
µN(s) +

δx′ − δx
N

, Y N(s)

)

− gs(µ
N(s), Y N(s))

])
×NµN

s (x)λx,x′(µN(s), Y N(s))ds.
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(3.3)

Let n ∈ N. Given the time points 0 = t0 < t1 < · · · < tn = T , α = (αti)
n−1
i=0 where αti :

M1(X ) → RX is continuous for each 0 ≤ i ≤ n− 1, and µ ∈ D([0, T ],M1(X )), define∫ t

0

αs(µs)dµs :=
n∑

i=1

⟨αti−1
(µti−1

), (µt∧ti − µt∧ti−1
)⟩, t ∈ [0, T ]; (3.4)

note that this object is an element of D([0, T ],R). Given s ∈ [0, T ], define

αs(µs) :=
n∑

i=1

αti−1
(µti−1

)1{s∈[ti−1,ti)}.

Then, given s ∈ [0, T ], x ∈ X , and ∆ = (x, x′) ∈ EX , we have

Dαs(µs)(x,∆) =
n∑

i=1

(αti−1
(µtt−1)(x

′)− αti−1
(µti−1

)(x))1{t∈[ti−1,ti)}.

Similarly, given s ∈ [0, T ], y ∈ Y , and ∆ = (y, y′) ∈ EY , we have

Dgs(µs, y,∆) = gs(µs, y
′)− gs(µs, y).

Finally, given (µ, θ) ∈ D([0, T ],M1(X )) × D↑([0, T ],M(Y)), time points 0 = t0 < t1 < · · · <
tn = T , α = (αti)

n−1
i=0 and g that satisfy the above requirements, define

Uα,g
t (µ, θ) :=

∫ t

0

αs(µs)dµs −
∫ t

0

〈
αs(µs),

∫
Y
Λ∗

µs,yµsms(dy)

〉
ds

−
∫ t

0

∫
X×EX×Y

τ(Dαs(µs)(x,∆))λx,x+d∆(µs, y)µs(dx)ms(dy)ds

−
∫ t

0

∫
Y

(
Lµsgs(µs, ·)(y)

+

∫
EY

τ(Dgs(µs, y,∆))γy,y+d∆(µs)

)
ms(dy)ds; (3.5)

here θ, when viewed as a measure on [0, T ]×Y , admits the representation θ(dydt) = mt(dy)dt

for some mt ∈ M1(Y) for almost all t ∈ [0, T ], which follows from the existence of the regular

conditional distribution (see, for example, Ethier and Kurtz [34, Theorem 8.1, page 502]).

We prove the following result, a condition that Ĩ must satisfy in terms of the functions Uα,g.
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Theorem 3.5. Let Ĩ : D([0, T ],M1(X ))×D↑([0, T ],M(Y)) → [0,+∞] denote a rate function

and suppose that there is a subsequence {(µNk , θNk), k ≥ 1} of {(µN , θN), N ≥ 1} that satisfies

the LDP with rate function Ĩ. Then, for each α and g that satisfy the requirements of the

definition of U and V in (3.5) and (3.3) respectively, we have

sup
(µ,θ)∈D([0,T ],M1(X ))×D↑([0,T ],M(Y))

(Uα,g
T (µ, θ)− Ĩ(µ, θ)) = 0. (3.6)

Proof. Note that, since the transition rates are bounded (which is a consequence of the assump-

tions (C2) and (D2)),

N

(∫ t

0

αs(µs)dµ
N
s −

∫ t

0

〈
αs(µs),

∫
Y
Λ∗

µN
s ,yµ

N
s θ

N(dyds)

〉)
, t ≥ 0,

is an Ft-martingale. Also, by Itô’s formula,

gt(µ
N(t),Y N(t))− g0(µ

N(0), Y N(0))−
∫ t

0

∂gs
∂s

(µN(s), Y N(s))ds

−
∫ t

0

∑
(x,x′)∈EX

[
gs

(
µN(s) +

δx′ − δx
N

, Y N(s)

)

− gs(µ
N(s), Y N(s))

]
×NµN

s (x)λx,x′(µN(s), Y N(s))ds

−N

∫ t

0

LµN (s)gs(µ
N(s), ·)(Y N(s))ds, t ≥ 0,

is an Ft-martingale. Therefore, using the Doléans-Dade exponential formula, it follows that

exp{NUα,g
t (µN , θN) + V g

t (µ
N , Y N)}, t ≥ 0,

is an Ft-martingale, and hence

E exp{NUα,g
T (µN , θN) + V g

T (µ
N , Y N)} = 1.

Clearly, Uα,g
T (·, ·) is continuous on D([0, T ],M1(X ))×D↑([0, T ],M(Y)), and since g is continu-

ously differentiable in the second argument, V g
T (µ

N , Y N) is bounded, and hence V g
T (µ

N , Y N)/N

goes to 0 P -a.s. Therefore, the result follows from an application of Varadhan’s lemma along

the subsequence {Nk, k ≥ 1} (see, for example, [29, Theorem 4.3.1]).
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3.4 The variational problem in J

Motivated by the duality relation (3.6), we define our candidate rate function

I∗(µ, θ) := sup
α,g

Uα,g
T (µ, θ), (3.7)

where the supremum is taken over all functions α and g that satisfy the conditions in Theo-

rem 3.5.

In this section, we study the above variational problem and show that, whenever I∗(µ, θ) <

+∞, I∗(µ, θ) coincides with the RHS of (3.2) and that I∗(µ, θ) can be expressed in a non-

variational form using elements from suitable Orlicz spaces. We begin with a necessary condition

on the elements of D([0, T ],M1(X ))×D↑([0, T ],M(Y)) whose I∗ is finite.

Lemma 3.1. If I∗(µ, θ) < +∞, then the mapping [0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely

continuous.

Proof. Take g ≡ 0 and α to be a function of only time (and denote this by αt) in the definition

of Uα,g
t in (3.5). Then (3.7) becomes

I∗(µ, θ) = sup
α,g

Uα,g
T (µ, θ)

≥
∫ T

0

αtdµt −
∫ T

0

⟨αt, Λ̄
∗
µt,mt

µt⟩dt

−
∫ T

0

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt.

Therefore, ∫ T

0

αtdµt ≤ I∗(µ, θ) +

∫ T

0

⟨αt, Λ̄
∗
µt,mt

µt⟩dt

+

∫ T

0

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt.

Replacing cαt in place of αt in the above equation, dividing throughout by c and choosing

c = 1/∥Dα∥Lτ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt) (i.e. the inverse of the norm of the function Dα in
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the Orlicz space Lτ ([0, T ]×X × EX , λ̄x,x+d∆(µt,mt)µt(dx)dt)), we have∫ T

0

αtdµt ≤ ∥Dα∥Lτ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt)(I
∗(µ, θ) + 1)

+

∫ T

0

⟨αt, Λ̄
∗
µt,mt

µt⟩dt.

Since α is arbitrary, from the definition of
∫ t

0
αtdµt in (3.4), it is clear that the mapping

[0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely continuous.

We also need the following lemma, whose proof can be found in Puhalskii [71, Lemma A.2,

page 460].

Lemma 3.2. Let V be a complete separable metric space, and let U be a dense subspace of

V. Let f(t, v) be a function defined on [0, T ] × V that is measurable in t and continuous in v.

Further, if f(t, β(t)) is locally integrable with respect to the Lebesgue measure on [0, T ] for all

measurable functions β : [0, T ] → U , then

sup
β(·)

∫ T

0

f(t, β(t))dt =

∫ T

0

sup
y∈U

f(t, y)dt,

where the supremum in the LHS is taken over all U-valued measurable functions β(·).

Let us introduce some notations. Let DCX (resp. DCY) denote the space of functions

Dα (resp. Dg) on [0, T ] × X × EX (resp. [0, T ] × Y × EY) such that α ∈ C1([0, T ] × X )

(resp. g ∈ C1([0, T ]×Y)). (For economy of notation in the sequel, we shall also view R-valued
functions on [0, T ] × X as RX -valued functions on [0, T ].) Given (µ, θ) ∈ D([0, T ],M1(X )) ×
D↑([0, T ],M(Y)), let HX (µ, θ) denote the L

τ∗([0, T ]×X ×EX , λ̄x,x+d∆(µt,mt)µt(dx)dt)-closure

of functions of the form {exp{Dα} − 1, Dα ∈ DCX} and let HY(µ, θ) denote the Lτ∗([0, T ] ×
Y×EY , γy,y+d∆(µt)mt(dy)dt)-closure of functions of the form {exp{Dg}−1, Dg ∈ DCY}, where
θ admits the representation θ(dydt) = mt(dy)dt for some mt ∈ M1(Y) for almost all t ∈ [0, T ].

We now prove the main result of this section.

Theorem 3.6. Suppose that (µ, θ) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)) is such that I∗(µ, θ) <
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∞. Then, we have

I∗(µ, θ) =

∫
[0,T ]

{
sup
α∈RX

(〈
α, (µ̇t − Λ̄∗

µt,mt
µt)
〉

−
∫
X×EX

τ(Dα(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)

)
+ sup

g∈B(Y)

∫
Y

(
−Lµtg(y)

−
∫
EY

τ(Dg(y,∆))γy,y+d∆(µt)

)
mt(dy)

}
dt, (3.8)

where mt ∈ M1(Y) is such that θ, when viewed as a measure on [0, T ]×Y, admits the representa-

tion θ(dydt) = mt(dy)dt for almost all t ∈ [0, T ]. Moreover, there exist functions hX ∈ HX (µ, θ)

and hY ∈ HY(µ, θ) that satisfy∫
[0,T ]×X×EX

hXDαλ̄x,x+d∆(µt,mt)µt(dx)dt

=

∫
[0,T ]

〈
αt, (µ̇t − Λ̄∗

µt,mt
µt)
〉
dt, ∀α ∈ B([0, T ]×X ), (3.9)

and ∫
[0,T ]×Y×EY

hYDgγy,y+d∆(µt)mt(dy)dt

= −
∫
[0,T ]×Y×EY

Dgγy,y+d∆(µt)mt(dy)dt, ∀g ∈ B([0, T ]× Y), (3.10)

respectively, hX ∈ Lτ∗([0, T ]×X×EX , λ̄x,x+d∆µt(dx)dt) and hY ∈ Lτ∗([0, T ]×Y×EY , γy,y+d∆(µt)mt(dy)dt),

and I∗(µ, θ) admits the representation

I∗(µ, θ) =

∫
[0,T ]×X×EX

τ ∗(hX )λ̄x,x+d∆(µt,mt)µt(dx)dt

+

∫
[0,T ]×Y×EY

τ ∗(hY)γy,y+d∆(µt)mt(dy)dt. (3.11)

Furthermore, if inft∈[0,T ] minx∈X µt(x) > 0 and inft∈[0,T ] miny∈Y mt(y) > 0, the suprema in (3.8)

over α and g are attained by α̂t ∈ RX and ĝt ∈ B(Y) that satisfy

µ̇t(x)− (Λ̄∗
µt,mt

µt)(x)

81



+ µt(x)
∑
x′∈X :

(x,x′)∈EX

(exp{α̂t(x
′)− α̂t(x)} − 1)λ̄x,x′(µt,mt)

−
∑
x0∈X :

(x0,x)∈EX

µt(x0)(exp{α̂t(x)− α̂t(x0)} − 1)λ̄x0,x(µt,mt) = 0, ∀x ∈ X , (3.12)

and

mt(y)
∑
y′∈Y:

(y,y′)∈EY

exp{ĝt(y′)− ĝt(y)}γy,y′(µt)

−
∑
y0∈Y:

(y0,y)∈EY

mt(y0) exp{ĝt(y)− ĝt(y0)}γy0,y(µt) = 0, ∀y ∈ Y , (3.13)

for almost all t ∈ [0, T ], respectively.

Proof. For the first part of the theorem, we shall make use of Lemma 3.2. Note that, by

Lemma 3.1, we have that the mapping [0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely continuous and

θ admits the representation θ(dydt) = mt(dy)dt where mt ∈ M1(Y) for almost all t ∈ [0, T ].

Therefore, for each t ≥ 0, Uα,g
t in (3.5) can be written as

Uα,g
t (µ, θ) =

∫ t

0

⟨αs(µs), µ̇s⟩ds−
∫ t

0

⟨αs(µs), Λ̄
∗
µs,ms

µs⟩ds

−
∫ t

0

∫
X×EX

τ(Dαs(µs)(x,∆))λ̄x,x+d∆(µs,ms)µs(dx)ds

−
∫ t

0

∫
Y

(
Lµsgs(µs, ·)(y)

+

∫
EY

τ(Dgs(µs, y,∆))γy,y+d∆(µs)

)
ms(dy)ds,

where α and g be satisfy the requirements in the definition of Uα,g
t in (3.5). Thus,

I∗(µ, θ) = sup
α

∫
[0,T ]

(
⟨αt(µt), µ̇t⟩ − ⟨αt(µt), Λ̄

∗
µt,mt

µt⟩

−
∫
X×EX

τ(Dαt(µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)

)
dt

+ sup
g

∫
[0,T ]

∫
Y

(
− Lµtgt(µt, ·)(y)

−
∫
EY

τ(Dgt(µt, y,∆))γy,y+d∆(µt)

)
mt(dy)dt
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where the supremum is taken over all functions α and g that satisfy the conditions in the

definition of Uα,g
t in (3.5). Note that, since µ is kept fixed, an approximation argument using

mollifiers implies that the above supremum over α can be replaced by supremum over RX -

valued bounded measurable functions on [0, T ]. Once again, since µ is fixed, we can replace

the supremum over g ∈ C1,1([0, T ],M1(X )×Y) with the supremum over bounded measurable

functions on [0, T ]× Y . Therefore,

I∗(µ, θ) = sup
α

∫
[0,T ]

(
⟨αt(µt), µ̇t⟩ − ⟨αt(µt), Λ̄

∗
µt,mt

µt⟩

−
∫
X×EX

τ(Dαt(µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)

)
dt

+ sup
g

∫
[0,T ]

∫
Y

(
− Lµtgt(µt, ·)(y)

−
∫
EY

τ(Dgt(µt, y,∆))γy,y+d∆(µt)

)
mt(dy)dt

where the supremum is taken over bounded measurable functions α : [0, T ] → RX and g :

[0, T ]× Y → R. We can now apply Lemma 3.2 to conclude that I∗(µ, θ) is given by (3.8).

We obtain the existence of functions hX ∈ HX (µ, θ) and hY ∈ HY(µ, θ) that satisfy the

conditions (3.9) and (3.10) and the non-variational representation of I∗ in (3.11) by carrying out

the convex analytic programme of Léonard [56, Sections 5-6] to the bounded linear functionals

α 7→
∫
[0,T ]

〈
αt, (µ̇t − Λ̄∗

µt,mt
µt)
〉
dt

and

g 7→
∫
[0,T ]×Y×EY

(
gt(y +∆)− gt(y)

)
γy,y+d∆(µt)mt(dy)dt

on the closure of {Dα,α ∈ B([0, T ] × X )} and {Dg, g ∈ B([0, T ] × Y)} in the Orlicz spaces

Lτ ([0, T ] × X × EX , λ̄x,x+d∆(µt,mt)µt(dx)dt) and Lτ ([0, T ] × Y × EY , γy,y+d∆(µt)mt(dy)dt) re-

spectively; the proof follows verbatim from Léonard [56] to our case, and we omit the details

here.

Finally, to show the existence of supremisers α̂t and ĝt in (3.8) and the conditions (3.12)

and (3.13) in the case when inft∈[0,T ] minx∈X µt(x) > 0 and inft∈[0,T ] miny∈Y mt(y) > 0, note
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that, for each t ∈ [0, T ] for which µ̇t exists, the mappings

αt 7→
〈
αt, (µ̇t − Λ̄∗

µt,mt
µt)
〉
−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µt,mt)µt(dx) (3.14)

and, viewing gt as an element of RY ,

gt 7→ −
∫
Y

(
Lµtgt(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µt)

)
mt(dy) (3.15)

are concave on RX and RY respectively. Therefore, there is an α̂t and a ĝt that attain the

suprema in (3.8); the conditions in (3.12) and (3.13) on α̂t and ĝt easily follow by writing down

the first order conditions for optimality of the mappings in (3.14) and (3.15) respectively.

3.5 Characterisation of the subsequential rate function

for sufficiently regular elements

Let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞] be a subsequential rate function for

the family {(µN , θN), N ≥ 1}, i.e., for some sequence {Nk, k ≥ 1} of N, {(µNk , θNk), k ≥ 1}
satisfies the large deviation principle with rate function Ĩ. In addition suppose that, for some

ν ∈ M1(X ), Ĩ(µ, θ) = +∞ unless µ0 = ν. In this section, we characterise Ĩ for sufficiently

regular elements in D([0, T ],M1(X ))×D↑([0, T ],M(Y)), i.e., we show that Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂)

for all elements (µ̂, θ̂) ∈ D([0, T ],M1(X )) × D↑([0, T ],M(Y)) that satisfy certain regularity

properties, where I∗ is given by (3.8) (see Theorem 3.8).

3.5.1 An extension of Theorem 3.5

We first extend the conclusion of Theorem 3.5 to a larger class of functions α and g. Let

Γ ⊂ D([0, T ],M1(X ))×D↑([0, T ],M(Y)) denote the set of points (µ, θ) such that the mapping

[0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely continuous, and θ, when viewed as a measure on

[0, T ] × Y , admits the representation θ(dydt) = mt(dy)dt where mt ∈ M1(Y) for almost all

t ∈ [0, T ]. In particular, (µ, θ) ∈ Γ implies that the mapping t 7→ µt is differentiable for

almost all t ∈ [0, T ]. Given bounded measurable functions α : [0, T ] × M1(X ) → RX and

g : [0, T ]×M1(X )×Y → R such that for all t ∈ [0, T ] and y ∈ Y both α(t, ·) and g(t, ·, y) are
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continuous on M1(X ), we define, with a slight abuse of notation, for (µ, θ) ∈ Γ and t ∈ [0, T ],

Uα,g
t (µ, θ) :=

∫
[0,t]

{
⟨αs(µs), µ̇s − Λ̄∗

µs,ms
µs⟩

−
∫
X×EX

τ(Dαs(µs)(x,∆))λ̄x,x+d∆(µs,ms)µs(dx)

−
∫
Y

(
Lµsgs(µs, ·)(y)

+

∫
EY

τ(Dgs(µs, y,∆))γy,y+d∆(µs)

)
ms(dy)

}
ds. (3.16)

Note that the boundedness of α and g in the above definition implies that Dα ∈ Lτ ([0, T ] ×
X × EX , λ̄x,x+d∆(µt,mt)µt(dx)dt), and Dg ∈ Lτ ([0, T ]× EY × Y , γy,y+d∆(µt)mt(dy)dt).

Let Ĩ : D([0, T ],M1(X ))×D↑([0, T ],M(Y)) → [0,+∞] be a subsequential rate function for

the family {(µN , θN), N ≥ 1}. Note that, by Theorem 3.5 and the definition of I∗ in (3.7), we

have that Ĩ(µ, θ) ≥ I∗(µ, θ) for all (µ, θ) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)). Given δ > 0,

define

Kδ = {(µ, θ) : Ĩ(µ, θ) ≤ δ};

since Ĩ has compact level sets, Kδ is compact in D([0, T ],M1(X )) × D↑([0, T ],M(Y)). By

Lemma 3.1 and the fact that Ĩ ≥ I∗, we have that Kδ ⊂ Γ. We now prove the following

extension to Theorem 3.5.

Theorem 3.7. Let Ĩ : D([0, T ],M1(X ))×D↑([0, T ],M(Y)) → [0,+∞] be a subsequential rate

function. Let α : [0, T ]×M1(X ) → RX , g : [0, T ]×M1(X )×Y → R be bounded and measurable

functions such that both α and g are continuous on M1(X ). Then,

sup
(µ,θ)∈Γ

(Uα,g
T (µ, θ)− Ĩ(µ, θ)) = 0.

Moreover, there exists some δ > 0 (depending on α and g) such that

sup
(µ,θ)∈Kδ

(Uα,g
T (µ, θ)− Ĩ(µ, θ)) = 0, (3.17)

and the above supremum is attained.

Proof. We first define certain approximations of functions α and g that meet the requirements

of Theorem 3.5 and prove certain convergence properties of these approximations. We then use
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the conclusion of Theorem 3.5 for these approximations and pass to the limit to obtain (3.17).

Our proof is inspired by ideas from Puhalskii [71, Lemma 7.2 and Theorem 7.1], with necessary

modifications to our mean-field with jumps setting.

Since α is a Carathéodory function, using the Scorza-Dragoni theorem, for each i ≥ 1, there

exists a compact set Fi ⊂ [0, T ] and a measurable function ᾱi : [0, T ]×M1(X ) → RX such that

ᾱi = α on Fi ×M1(X ), ᾱi is continuous on Fi ×M1(X ), and Leb([0, T ] \ Fi) ≤ 1/i (see, for

example, Ekeland and Temam [33, page 235]). Since [0, T ] \ Fi is open in [0, T ], we can write

it as a countable union of disjoint open intervals, and hence we can extend ᾱi to a continuous

function on [0, T ] ×M1(X ) by a linear interpolation between the two endpoints of the above

open intervals; we again denote this function by ᾱi. Put αi(t, µt) = ᾱi(
⌊tn(i)⌋
n(i)

, µ ⌊tn(i)⌋
n(i)

), where

n(i) → ∞ as i → ∞. By continuity of τ , boundedness of α and αi, boundedness of transition

rates of the particles (which is a consequence of assumption (C2)), we have that, for each δ > 0,

sup
(µ,θ)∈Kδ

∣∣∣∣ ∫
[0,T ]×X×EX

τ(Dαi(t, µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt−∫
[0,T ]×X×EX

τ(Dα(t, µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt

∣∣∣∣
= sup

(µ,θ)∈Kδ

∣∣∣∣ ∫
F c
i ×X×EX

τ(Dαi(t, µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt−∫
F c
i ×X×EX

τ(Dα(t, µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)dt

∣∣∣∣
≤ Leb(F c

i )× cα → 0 (3.18)

as i → ∞, where cα > 0 is a constant depending on α. Furthermore, given δ > 0 and

(µ, θ) ∈ Kδ, by Lemma 3.1, the mapping [0, T ] ∋ t 7→ µt ∈ M1(X ) is absolutely continuous.

Hence, noting that µ is kept fixed, by (3.9) in Theorem 3.6, there exists hX ∈ H(µ, θ) such that∫
[0,T ]

〈
α(t, µt), (µ̇t − Λ̄∗

µt,mt
µt)
〉
dt

=

∫
[0,T ]×X×EX

hXDαλ̄x,x+d∆(µt,mt)µt(dx)dt,

and ∫
[0,T ]

〈
αi(t, µt), (µ̇t − Λ̄∗

µt,mt
µt)
〉
dt

=

∫
[0,T ]×X×EX

hXDαiλ̄x,x+d∆(µt,mt)µt(dx)dt.
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Therefore, ∣∣∣∣ ∫
[0,T ]

⟨αi(t, µt)− α(t, µt), µ̇t − Λ̄∗
µt,mt

µt⟩dt
∣∣∣∣

=

∣∣∣∣ ∫
[0,T ]×X×EX

hX (Dαi −Dα)λ̄x,x+d∆(µt,mt)µt(dx)dt

∣∣∣∣
≤
∫
[0,T ]×X×EX

|hX (Dαi −Dα)|λ̄x,x+d∆(µt,mt)µt(dx)dt

≤ 2∥hX∥Lτ∗ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt)

× ∥Dαi −Dα∥Lτ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt)

≤ 2max{1, δ + T}

× ∥Dαi −Dα∥Lτ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt),

where the second inequality follows from Hölder’s inequality in Orlicz spaces and the third

inequality follows from the non-variational representation of the candidate rate function in I∗

in (3.11), which gives that ∥hX∥Lτ∗ ([0,T ]×X×EX ,λ̄x,x+d∆(µt,mt)µt(dx)dt) ≤ max{1, I∗(µ, θ) + T}, along
with the fact that (µ, θ) ∈ Kδ and I∗(µ, θ) ≤ Ĩ(µ, θ). Hence,

sup
(µ,θ)∈Kδ

∣∣∣∣ ∫
[0,T ]

⟨αi(t, µt)− α(t, µt), µ̇t − Λ̄∗
µt,mt

µt⟩dt
∣∣∣∣→ 0 (3.19)

as i → ∞. Similarly, by standard arguments using mollifiers and the Scorza-Dragoni theorem,

we can show that there exist functions gi on [0, T ]×M1(X )×Y such that gi(·, ·, y) ∈ C∞([0, T ]×
M1(X )) for all y ∈ Y and Leb{t ∈ [0, T ] : gi(t, ·, ·) ̸= g(t, ·, ·)} ≤ 1/i for each i ≥ 1. Therefore,

using boundedness of the functions g, gi, i ≥ 1, and boundedness of the transition rates of the

fast process (which is a consequence of assumption (D2)), we see that

sup
(µ,θ)∈Kδ

∣∣∣∣ ∫
[0,T ]×Y

(
Lµtgi(t, µt, ·)(y)

+

∫
EY

τ(Dgi(t, µt, y,∆))γy,y+d∆(µt)

)
mt(dy)dt

−
∫
[0,T ]×Y

(
Lµtg(t, µt, ·)(y)

+

∫
EY

τ(Dg(t, µt, y,∆))γy,y+d∆(µt)

)
mt(dy)dt

∣∣∣∣→ 0 (3.20)

as i → ∞. Since αi and gi, i ≥ 1, satisfy the conditions on α and g respectively in the definitions
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of U in (3.5) and V in (3.3), Theorem 3.5 implies that

sup
(µ,θ)∈D([0,T ],M1(X ))×D↑([0,T ],M(Y))

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ)) = 0.

By Lemma 3.1 and the fact that Ĩ(µ, θ) ≥ I∗(µ, θ), we see that Ĩ(µ, θ) = +∞ whenever

(µ, θ) /∈ Γ, and hence we immediately get

sup
(µ,θ)∈Γ

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ)) = 0. (3.21)

Let us now show that

sup
(µ,θ)∈Kδ

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ)) = 0 (3.22)

holds for a suitable δ > 0 and all i ≥ 1. Note that, using the boundedness of the functions

α, g, αi and gi, i ≥ 1, and the boundedness of the transition rates (as a consequence of

assumptions (C2) and (D2)), we have

U2αi,2gi
T (µ, θ) =

∫
[0,T ]

{
2⟨αi(t, µt), µ̇t − Λ̄∗

µt,mt
µt⟩

−
∫
X×EX

τ(2Dαi(t, µt)(x,∆))λ̄x,x+d∆(µt,mt)µt(dx)

−
∫
Y

(
2Lµtgt(µt, ·)(y)

+

∫
EY

τ(2Dgi(t, µt, y,∆))γy,y+d∆(µt)

)
mt(dy)

}
dt

≥ 2Uαi,gi
T (µ, θ)− 2Tcα,g

for all i ≥ 1, where cα,g > 0 is a constant depending on α and g. Therefore, for a fixed M > 0,

we have

sup
(µ,θ):U

αi,gi
T (µ,θ)≥M

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ))

≤ sup
(µ,θ):U

αi,gi
T (µ,θ)≥M

(2Uαi,gi
T (µ, θ)− Ĩ(µ, θ))−M

≤ sup
(µ,θ):U

αi,gi
T (µ,θ)≥M

(U2αi,2gi
T (µ, θ)− Ĩ(µ, θ)) + 2Tcα,g −M

≤ 2Tcα,g −M.
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Therefore the above implies that,

sup
(µ,θ)∈Γ

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ))

≤ sup
(µ,θ)∈Kδ

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ))

∨ sup
(µ,θ):U

αi,gi
T (µ,θ)≥M

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ))

∨ (M − δ)

≤ sup
(µ,θ)∈Kδ

(Uαi,gi
T (µ, θ)− Ĩ(µ, θ)) ∨ (2Tcα,g −M) ∨ (M − δ).

Hence, choosing M = 1+2Tcα,g and δ = M+1, the above and (3.21) imply (3.22). Letting i →
∞, using convergences (3.18)-(3.19) for the slow process, and (3.20) for the fast process, (3.22)

becomes

sup
(µ,θ)∈Kδ

(Uα,g
T (µ, θ)− Ĩ(µ, θ)) = 0. (3.23)

Since the functions Uαi,gi
T (defined in (3.5)), i ≥ 1, are continuous on Γ and since for all

δ′ > 0

lim
i→∞

sup
(µ,θ)∈Kδ′

|Uαi,gi
T (µ, θ)− Uα,g

T (µ, θ)| → 0

as i → ∞, it follows that, for all δ′ > 0, Uα,g
T (defined in (3.16)) is continuous on Kδ′ . Hence,

using the compactness of the level sets of Ĩ, we see that the supremum in (3.23) is attained.

This completes the proof of the theorem.

3.5.2 Characterisation of Ĩ for regular elements

We now prove the main result of this section, namely Ĩ(µ, θ) = I∗(µ, θ) for all (µ, θ) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)) that satisfy certain regularity properties.

Theorem 3.8. Let ν ∈ M1(X ) and let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞]

be a subsequential rate function such that Ĩ(µ, θ) = +∞ unless µ0 = ν. Suppose that (µ̂, θ̂) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)) is such that

• inft∈[0,T ] minx∈X µ̂t(x) > 0,

• the mapping [0, T ] ∋ t 7→ µ̂t ∈ M1(X ) is Lipschitz continuous,
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• θ̂, when viewed as a measure on [0, T ]×Y, admits the representation θ̂(dydt) = m̂t(dy)dt

for some m̂t ∈ M1(Y) for almost all t ∈ [0, T ], and inft∈[0,T ]miny∈Y m̂t(y) > 0.

Then Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

Proof. Let δ = inft>0minx∈X µ̂t(x). For each t ∈ [0, T ], consider the parametrised optimisation

problems

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

u,m̂t
u⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(u, m̂t)u(dx)

}
, (3.24)

u ∈ M1(X ) is such that u(x) ≥ δ/2 for all x ∈ X , and

sup
gt∈B(Y)

{
−
∫
Y

(
Lugt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(u)

)
m̂t(dy)

}
, (3.25)

u ∈ M1(X ). Note that the mappings

αt 7→ ⟨αt, ˙̂µt − Λ̄∗
u,m̂t

u⟩ −
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(u, m̂t)u(dx), (3.26)

where u is such that u(x) ≥ δ/2 for all x ∈ X , and since inft∈[0,T ] miny∈Y m̂t(y) > 0, viewing gt

as an element of RY ,

gt 7→ −
∫
Y

(
Lugt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(u)

)
m̂t(dy) (3.27)

are concave on RX and RY respectively. Therefore, we see that there exist an α̂t(u) ∈ RX and

a ĝt(u) ∈ RY that solve (3.24) and (3.25) respectively. Guided by (3.12) and (3.13), α̂t(u) and

ĝt(u) satisfy the first order optimality conditions

˙̂µt(x)− (Λ̄∗
u,m̂t

u)(x)

+ u(x)
∑
x′∈X :

(x,x′)∈EX

(exp{α̂t(u)(x
′)− α̂t(u)(x)} − 1)λ̄x,x′(u, m̂t)

−
∑
x0∈X :

(x0,x)∈EX

u(x0)(exp{α̂t(u)(x)− α̂t(u)(x0)} − 1)λ̄x0,x(u, m̂t) = 0, ∀x ∈ X , (3.28)
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where t ∈ [0, T ] and u ∈ M1(X ) is such that u(x) ≥ δ/2 for all x ∈ X , and

m̂t(y)
∑
y′∈Y:

(y,y′)∈EY

exp{ĝt(u, y′)− ĝt(u, y)}γy,y′(u)

−
∑
y0∈Y:

(y0,y)∈EY

m̂t(y0) exp{ĝt(u, y)− ĝt(u, y0)}γy0,y(u) = 0, ∀y ∈ Y , (3.29)

where t ∈ [0, T ] and u ∈ M1(X ), respectively.

We now define bounded measurable functions α̂ : [0, T ] × M1(X ) → RX and ĝ : [0, T ] ×
M1(X ) × Y → R that are continuous on M1(X ) such that α̂(u) (resp. ĝ(u)) solves the

optimisation problem in (3.24) (resp. (3.25)). Note that the objective function in (3.25) is

uniquely determined by {g(t, y′) − g(t, y), (y, y′) ∈ EY}, and by assumption (C1), the ob-

jective function in (3.24) is uniquely determined by {αt(x
′) − αt(x), (x, x

′) ∈ EX}. Since

inft∈[0,T ] minx∈X µ̂t(x) > 0, the mapping t 7→ µ̂t is Lipschitz continuous, and the transition

rates of the slow process are bounded (which is a consequence of assumption (C2)), we see

that we can restrict the supremum over αt in (3.24) to a single compact and convex subset

of RX , regardless of t ∈ [0, T ] and u ∈ M1(X ) with u(x) ≥ δ/2 for all x ∈ X . Similarly,

since inft∈[0,T ] miny∈Y m̂t(y) > 0 and the transition rates of the fast process are bounded (which

follows from assumption (D2)), we see that we can restrict the supremum in (3.25) to a single

compact and convex subset of RY , regardless of t ∈ [0, T ] and u ∈ M1(X ). Also, note that the

mappings (3.24) and (3.25), when viewed as

{αt(x
′)− αt(x), (x, x

′) ∈ EX}

7→ ⟨αt, ˙̂µt − Λ̄∗
u,m̂t

u⟩ −
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(u, m̂t)u(dx)

and,

{gt(y′)− gt(y), (y, y
′) ∈ EY}

7→ −
∫
Y

(
Lugt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(u)

)
m̂t(dy)

are strictly concave on REX and REY respectively; hence there exists a unique {α̂t(u)(x
′) −

α̂t(u)(x), (x, x
′) ∈ EX} and a unique {ĝt(u, y′)−ĝt(u, y), (y, y

′) ∈ EY} that solve (3.24) and (3.25)

respectively. Fixing α̂t(u)(x0) = 0 for some x0 ∈ X , where t ∈ [0, T ] and u ∈ M1(X ) with

u(x) ≥ δ/2 for all x ∈ X , fixing gt(u, y0) = 0 for some y0 ∈ Y , where t ∈ [0, T ] and u ∈ M1(X ),

91



defining α̂t(u)(x) = 0∀x ∈ X whenever u ∈ M1(X ) is such that u(x) < δ/4 for some x ∈ X ,

and defining α̂(u) whenever u is such that u(x) ∈ [δ/4, δ/2] for some x ∈ X using a linear

interpolation, we obtain bounded functions α̂ : [0, T ]×M1(X ) → RX and ĝ : [0, T ]×M1(X )×
Y → R. By a measurable selection theorem (see, for example, Ekeland and Temam [33,

Theorem 1.2, page 236]), it follows that the mappings [0, T ] ×M1(X ) ∋ (t, u) 7→ α̂t(u) ∈ RX

and [0, T ] ×M1(X ) × Y ∋ (t, u, y) 7→ ĝt(u, y) ∈ R are measurable. By the Berge’s maximum

theorem (see, for example, Sundaram [82, Theorem 9.17, page 237]) it follows that the functions

α̂ and ĝ are continuous on M1(X ).

Since α̂ and ĝ satisfy the assumptions of Theorem 3.7, there exists (µ̃, θ̃) ∈ Γ that attains

the supremum in (3.17) with α̂ and ĝ in place of α and g, respectively. That is,

U α̂,ĝ
T (µ̃, θ̃) = Ĩ(µ̃, θ̃).

On the other hand, by (3.8) and the above,

I∗(µ̃, θ̃) ≥ U α̂,ĝ
T (µ̃, θ̃) = Ĩ(µ̃, θ̃),

and since Ĩ(µ̃, θ̃) ≥ I∗(µ̃, θ̃), we have that

U α̂,ĝ
T (µ̃, θ̃) = I∗(µ̃, θ̃) = Ĩ(µ̃, θ̃). (3.30)

Note that µ̃0 = ν since Ĩ(µ̃, θ̃) < +∞. We now proceed to show that m̃t = m̂t for almost

all t ∈ [0, T ] and µ̃ = µ̂. This would establish Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

By (3.30), we have

m̃t(y)
∑
y′∈Y:

(y,y′)∈EY

exp{ĝt(µ̃t, y
′)− ĝt(µ̃t, y)}γy,y′(µ̃t)

−
∑
y0∈Y:

(y0,y)∈EY

m̃t(y0) exp{ĝt(µ̃t, y)− ĝt(µ̃t, y0)}γy0,y(µ̃t) = 0, ∀y ∈ Y , (3.31)

for almost all t ∈ [0, T ]. By assumption (D2), the Markov process on Y with transition rates

exp{ĝt(µ̃t, y
′)− ĝt(µ̃t, y)}γy,y′(µ̃t), (y, y

′) ∈ EY , possesses a unique invariant probability measure;

comparing (3.29) with u = µ̃t and (3.31), we get

m̃t = m̂t (3.32)
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for almost all t ∈ [0, T ].

On one hand, by using the first order optimality condition in (3.28) with u = µ̂t, and the

just established fact that m̃t = m̂t for almost all t ∈ [0, T ], we get

˙̂µt(x)− (Λ̄∗
µ̂t,m̃t

µ̂t)(x)

+ µ̂t(x)
∑
x′∈X :

(x,x′)∈EX

(exp{α̂t(µ̂t)(x
′)− α̂t(µ̂t)(x)} − 1)λ̄x,x′(µ̂t, m̃t)

−
∑
x0∈X :

(x0,x)∈EX

µ̂t(x0)(exp{α̂t(µ̂t)(x)− α̂t(µ̂t)(x0)} − 1)λ̄x0,x(µ̂t, m̃t) = 0, ∀x ∈ X , (3.33)

for almost all t ∈ [0, T ]. On the other hand, by (3.30), we get

˙̃µt(x)− (Λ̄∗
µ̃t,m̃t

µ̃t)(x)

+ µ̃t(x)
∑
x′∈X :

(x,x′)∈EX

(exp{α̂t(µ̃t)(x
′)− α̂t(µ̃t)(x)} − 1)λ̄x,x′(µ̃t, m̃t)

−
∑
x0∈X :

(x0,x)∈EX

µ̃t(x0)(exp{α̂t(µ̃t)(x)− α̂t(µ̃t)(x0)} − 1)λ̄x0,x(µ̃t, m̃t) = 0, ∀x ∈ X , (3.34)

for almost all t ∈ [0, T ]. Note that, by the optimality condition (3.28) and by (3.32), the

mapping

u 7→
(
(Λ̄∗

u,m̃t
u)(x) + u(x)

∑
x′∈X :

(x,x′)∈EX

(exp{α̂t(u)(x
′)− α̂t(u)(x)} − 1)λ̄x,x′(u, m̃t)

−
∑
x0∈X :

(x0,x)∈EX

u(x0)(exp{α̂t(u)(x)− α̂t(u)(x0)} − 1)λ̄x0,x(u, m̃t), x ∈ X
)

∈ RX

on {u ∈ M1(X ) : u(x) ≥ δ/2∀x ∈ X} is identically equal to ˙̂µt for almost all t ∈ [0, T ]. Hence,

by (3.33) and (3.34), and noting that µ̃0 = µ̂0 = ν, Gronwall inequality implies that µ̃t = µ̂t

for all t ∈ [0, T ].

We have thus shown that (µ̃, θ̃) = (µ̂, θ̂), and the second equality in (3.30) implies that

Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂). This completes the proof of the theorem.
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Figure 3.1: Figure depicting the idea of construction of µ̂i in the proof of Lemma 3.3.

3.6 Approximating the subsequential rate function

Let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞] be a subsequential rate function for

the family {(µN , θN), N ≥ 1}, and suppose that, for some ν ∈ M1(X ), Ĩ(µ, θ) = +∞ unless

µ0 = ν. In this section, we show that Ĩ(µ, θ) = I∗(µ, θ) for all (µ, θ) ∈ D([0, T ],M1(X )) ×
D↑([0, T ],M(Y)). We shall proceed through a sequence of lemmas. In each lemma, we shall ex-

tend the conclusion Ĩ(µ, θ) = I∗(µ, θ) to a larger class of elements (µ, θ) by producing a sequence

(µi, θi) such that Ĩ(µi, θi) = I∗(µi, θi) for all i ≥ 1, (µi, θi) → (µ, θ) in D([0, T ],M1(X )) ×
D↑([0, T ],M(Y)) as i → ∞, and I∗(µi, θi) → I∗(µ, θ) as i → ∞. Using these approximations,

we finally show that Ĩ(µ, θ) = I∗(µ, θ) for all (µ, θ) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)) (see

Theorem 3.9).

We start with an extension of the conclusion of Theorem 3.8 to all initial conditions ν.

Lemma 3.3. Let ν ∈ M1(X ) and let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞] be

a subsequential rate function such that Ĩ(µ, θ) = +∞ unless µ0 = ν. Suppose that (µ̂, θ̂) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)) is such that

• I∗(µ̂, θ̂) < +∞,

• inft∈[δ,T ] minx∈X µ̂t(x) > 0 for all δ > 0,

• the mapping [0, T ] ∋ t 7→ µ̂t ∈ M1(X ) is Lipschitz continuous,

• θ̂, when viewed as a measure on [0, T ]×Y, admits the representation θ̂(dydt) = m̂t(dy)dt

for some m̂t ∈ M1(Y) for almost all t ∈ [0, T ], and inft∈[0,T ] miny∈Y m̂t(y) > 0.

Then Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).
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Proof. We begin with some notations. Let X0 = {x ∈ X : µ̂0(x) = 0}. For each x ∈ X0, let

{xx
k, 1 ≤ k ≤ l(x)} be such that µ̂0(x

x
1) ≥ 1/|X0| (in particular, xx

1 /∈ X0), (x
x
k, x

x
k+1) ∈ EX

for all 1 ≤ k ≤ l(x) − 1, and (xx
l(x), x) ∈ EX , i.e., the collection of edges {(xx

k, x
x
k+1), 1 ≤

k ≤ l(x) − 1} ∪ (xx
l(x), x) form a directed path of length l(x) from xx

1 to x. Also, for the

given ν ∈ M1(X ), let µ(ν, θ̂) ∈ D([0,∞),M1(X )) denote the unique solution to the ODE

µ̇t = Λ̄∗
µt,m̂t

µt with initial condition µ0 = ν.

For each i ≥ 1, we define a path µ̂i ∈ D([0, T ],M1(X )) as follows. Define µ̂i
t = µt(µ̂0, θ̂)

for t ∈ [0, τ i] where τ i = inf{t > 0 : µt(µ̂0, θ̂)(x) = µ̂1/i(x)/2 for some x ∈ X0}. Note that

τ i < +∞ for i sufficiently large. Also note that µ̂i
τ i(x) > 0 for all x ∈ X , and that the

supremum over αt in the definition of I∗(µ̂i, θ̂) (see (3.8)) is attained at αt = 0 for all t ∈ [0, τ i].

Let εi(x) = µ̂1/i(x) − µ̂i
τ i(x) for x ∈ X and i ≥ 1. Since the mapping t 7→ µ̂t is Lipschitz

continuous, we see that τ i → 0 as i → ∞, and εi(x) → 0 as i → ∞ for all x ∈ X . For each

x ∈ X̃0 := X0 ∩ {x ∈ X0 : εi(x) > 0}, we shall now move the mass εi(x) from the vertex xx
1 to x

via the edges defined in the previous paragraph using a piecewise constant velocity path. Denote

the elements of X̃0 by x1, x2 . . . , x|X̃0|, let l(x0) = 0 and εi(x0) = 0. Given r ∈ {0, 1, . . . , |X̃0|−1},
s ∈ {0, 1, . . . , l(xr+1)−1}, and t ∈ [τ i+

∑r
m=0 l(xm)εi(xm)+sεi(xr+1), τ

i+
∑r

m=0 l(xm)εi(xm)+

(s+ 1)εi(xr+1)), define

˙̂µi
t(x) :=


−1 if x = x

xr+1

s+1

1 if x = x
xr+1

s+2

0 otherwise,

i.e., we transport a mass of εi(xr+1) at unit rate from the node x
xr+1

s+1 to x
xr+1

s+2 during the above

time interval. Note that we have µ̂i
t(x) = µ̂t(x) for all x ∈ X̃0 at time t = τ i+

∑|X̃0|
m=1 l(xm)εi(xm).

Similarly, for x ∈ X \ X̃0 with εi(x) > 0, one defines a sequence of edges from a suitable

x′ ∈ X \ X̃0 (possibly from multiple x′ ∈ X \ X̃0) with εi(x
′) < 0 and moves the mass εi(x) to

x through similar piecewise constant velocity trajectories defined above. For each x ∈ X \ X̃0

with εi(x) < 0, we similarly move the mass εi(x) from x to suitable vertices in X \ X̃0 via

piecewise constant velocity trajectories. At the end of this procedure, we have µ̂i
τ̂ i = µ̂1/i for

some τ̂ i ≥ τ i. We now define µ̂i
t = µ̂t+1/i−τ̂ i for all t ∈ [τ̂ i, T ] (see Figure 3.1 for a pictorial

representation of µ̂i). Since εi(x) → 0 as i → ∞ for all x ∈ X , we have that τ̂ i → 0 as i → ∞.

Also, for each i ≥ 1 and t ∈ [0, T ], define the probability measure m̂i
t on Y by

m̂i
t(y) :=


m̂t(y) if t ∈ [0, τ i],

m̂τ i(y) if t ∈ [τ i, τ̂ i],

m̂t+1/i−τ̂ i(y) if t ∈ (τ̂ i, T ],
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for all y ∈ Y , and define the measure θ̂i on [0, T ] × Y by θ̂i(dydt) = m̂i
t(dy)dt. Clearly,

θ̂i ∈ D↑([0, T ],M(Y)).

Thanks to the fact that µ̂i
τ i(x) > 0 for all x ∈ X and the fact that αt = 0 attains the

supremum in the definition of I∗(µ̂i, θ̂i) for all t ∈ [0, τ i], using arguments similar to those

used in the proof of Theorem 3.8, one can now construct a bounded measurable function

α̂i : [0, T ] × M1(X ) → RX such that α̂i
t(µ̂

i
t) attains the supremum over αt in the definition

of I∗(µ̂i, θ̂i) (in (3.8)) and α̂i
t(·) is continuous on M1(X ) for all t ∈ [0, T ]. Similarly, since

θ̂i satisfies the conditions of Theorem 3.8, one can construct a bounded measurable function

ĝi : [0, T ]×M1(X )×Y → R such that ĝit(µ̂
i
t, ·) attains the supremum over gt in the definition of

I∗(µ̂i, θ̂i) and ĝit(·) is continuous on M1(X ) for each t ∈ [0, T ]. Hence, using arguments similar

to those used in the proof of Theorem 3.8, one concludes that Ĩ(µ̂i, θ̂i) = I∗(µ̂i, θ̂i) for all i ≥ 1.

Let us now show that I∗(µ̂i, θ̂i) → I∗(µ̂, θ̂) as i → ∞. For the fast component, since τ̂ i → 0,

we see that θ̂i → θ̂ in D↑([0, T ],M(Y)) as i → ∞. By assumption (D2), we see that

0 ≤ sup
i≥1,t∈[0,T ]

{
sup
gt∈RY

−
∫
Y

(
Lµ̂i

t
gt(·)(y)

+

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂i

t(dy)

}
< +∞,

and hence the bounded convergence theorem immediately yields∫
[0,τ̂ i]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂i

t
gt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂i

t(dy)

}
dt → 0

and ∫
[T+1/i−τ̂ i,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

}
dt → 0

as i → ∞. Noting that m̂i
t = m̂t+1/i−τ̂ i and µ̂i

t = µ̂t+1/i−τ̂ i for all t ∈ [τ̂ i, T ], the above

convergences imply that∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂i

t
gt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂i

t(dy)

}
dt

→
∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

}
dt

as i → ∞.

For the slow component, since τ̂ i → 0 as i → ∞, using the absolute continuity of the
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mapping t 7→ µ̂t and the definition of the paths µ̂i, it follows from the dominated convergence

theorem that µ̂i
t → µ̂t as i → ∞ uniformly in t ∈ [0, T ] and hence we have that µ̂i → µ̂ in

D([0, T ],M1(X )) as i → ∞. Let us first show that∫
[0,τ̂ i]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt

converges to 0 as i → ∞. Towards this, let t ∈ [τ i +
∑r

m=0 l(xm)εi(xm) + sεi(xr+1), τ
i +∑r

m=0 l(xm)εi(xm)+(s+1)εi(xr+1)) where r ∈ {0, 1, . . . , |X̃0|−1}, and s ∈ {0, 1, . . . , l(xr+1)−1}.
Note that, we have

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
≤ sup

αt∈RX

(
(αt(x

xr+1

s+2 )− αt(x
xr+1

s+1 ))− (exp{αt(x
xr+1

s+2 )− αt(x
xr+1

s+1 )} − 1)

× λ̄x
xr+1
s+1 ,x

xr+1
s+2

(µ̂i
t, m̂

i
t)µ̂

i
t(x

xr+1

s+1 )

)
− inf

αt∈RX

∑
(x,x′)∈EX :

(x,x′ )̸=(x
xr+1
s+1 ,x

xr+1
s+2 )

(exp{αt(x
′)− αt(x)} − 1)λ̄x,x′(µ̂i

t, m̂
i
t)µ̂

i
t(x)

≤ log
1

cµ̂i
t(x

xr+1

s+1 )
+ c1

where c = min(x,x′)∈EX miny∈Y minξ∈M1(X ) λx,x′(ξ, y) and c1 > 0 is a suitable constant to bound

the extra additive terms. Hence, using a variable change u = cµ̂i
t(x

xr+1

s+1 ), we see that∫
sup

αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt

≤ −1

c
(u log u− u)|

cµ̂i
t2
(x

xr+1
s+1 )

cµ̂i
t1
(x

xr+1
s+1 )

+ c1εi(xr+1)

= o(1)

as i → ∞, where t1 = τ i+
∑r

m=0 l(xm)εi(xm)+sεi(xr+1), t2 = t1+εi(xr+1) and the above integral

is evaluated over the time interval [τ i+
∑r

m=0 l(xm)εi(xm)+sεi(xr+1), τ
i+
∑r

m=0 l(xm)εi(xm)+

(s + 1)εi(xr+1)). Hence, repeating the above calculation for each constant velocity section of

the path µ̂i during the time interval [τ i, τ̂ i], we see that∫
[0,τ̂ i]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt
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converges to 0 as i → ∞. Therefore, noting that µ̂i
t = µ̂t+1/i−τ̂ i and m̂i

t = m̂t+1/i−τ̂ i for

t ∈ [τ̂ i, T ], and µ̂i
t = µt(µ̂0, θ̂) on t ∈ [0, τ i], we have∣∣∣∣ ∫

[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
dt

−
∫
[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt

∣∣∣∣
≤
∫
[0,1/i]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
dt

+

∫
[T+1/i−τ̂ i,T ]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
dt

+

∫
[0,τ̂ i]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt

→ 0

as i → ∞. We have thus shown that I∗(µ̂i, θ̂i) → I∗(µ̂, θ̂) as i → ∞.

Since (µ̂i, θ̂i) → (µ̂, θ̂) in D([0, T ],M1(X ))×D↑([0, T ],M(Y)) as i → ∞, the lower semicon-

tinuity of Ĩ implies that lim infi→∞ Ĩ(µ̂i, θ̂i) ≥ Ĩ(µ̂, θ̂). Therefore, using the above convergence

and the fact that Ĩ(µ̂i, θ̂i) = I∗(µ̂i, θ̂i) for all i ≥ 1, we see that Ĩ(µ̂, θ̂) ≤ I∗(µ̂, θ̂). On the other

hand, since Ĩ(µ̂, θ̂) ≥ I∗(µ̂, θ̂), it follows that Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂). This completes the proof of the

lemma.

Remark 3.2. We shall repeatedly use the immediately preceding argument; starting with an

element (µ̂, θ̂) ∈ D([0, T ],M1(X )) × D↑([0, T ],M(Y)), we shall produce a sequence (µ̂i, θ̂i) ∈
D([0, T ],M1(X )) × D↑([0, T ],M(Y)), i ≥ 1, such that Ĩ(µ̂i, θ̂i) = I∗(µ̂i, θ̂i) for all i ≥ 1,

(µ̂i, θ̂i) → (µ̂, θ̂) in D([0, T ],M1(X ))×D↑([0, T ],M(Y)) as i → ∞ and I∗(µ̂i, θ̂i) → I∗(µ̂, θ̂) as

i → ∞, and use the above argument to conclude that Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

We now extend the conclusion of the previous lemma to all elements θ̂ ∈ D↑([0, T ],M(Y)).

Lemma 3.4. Let ν ∈ M1(X ) and let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞] be

a subsequential rate function such that Ĩ(µ, θ) = +∞ unless µ0 = ν. Suppose that (µ̂, θ̂) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)) is such that

• I∗(µ̂, θ̂) < +∞,

• inft∈[δ,T ] minx∈X µ̂t(x) > 0 for all δ > 0,

• the mapping [0, T ] ∋ t 7→ µ̂t ∈ M1(X ) is Lipschitz continuous.
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Then Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

Proof. Let θ̂, when viewed as a measure on [0, T ] × Y , admit the representation θ̂(dydt) =

m̂t(dy)dt, where m̂t ∈ M1(Y) for almost all t ∈ [0, T ]. For each i ≥ 1 and for each t ∈ [0, T ],

define the probability measure m̂i
t on Y by

m̂i
t(y) =

m̂t(y) + 1/i

1 + |Y|/i
, y ∈ Y , (3.35)

and, for each i ≥ 1, define the measure θ̂i(dydt) on [0, T ] × M(Y) by θ̂i(dydt) := m̂i
t(dy)dt.

Clearly, θ̂i ∈ D↑([0, T ],M(Y)) for all i ≥ 1, and θ̂i → θ̂ in D↑([0, T ],M(Y)) as i → ∞. Since

(µ̂, θ̂i) satisfies the assumptions of Lemma 3.3, we have Ĩ(µ̂, θ̂i) = I∗(µ̂, θ̂i).

Since, for each t ∈ [0, T ], the mapping

(gt,mt) 7→ max

{
−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
mt(dy), 0

}
on (R ∪ {+∞,−∞})Y ×M1(Y) is bounded and continuous (thanks to assumption (D2)), by

an application of the Berge’s maximum theorem, it follows that the mapping

mt 7→ sup
gt∈RY

−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
mt(dy) (3.36)

is continuous on M1(Y). Similarly, for each t ≥ 0, by assumption (C2), it follows that the

mapping

(αt,mt) 7→ ⟨αt, ˙̂µt − Λ̄∗
µ̂t,mt

⟩ −
∫
X×EX

τ(Dαt(x,∆))λ̄x.x+d∆(µ̂t,mt)µ̂t(dx)

is bounded and continuous on RX ×M1(Y). Again, by the Berge’s maximum theorem,

mt 7→ sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,mt
⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t,mt)µ̂t(dx)

}
is continuous on M1(Y). Therefore, for each t ∈ [0, T ], we see that

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂i
t
⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂
i
t)µ̂t(dx)

}
→ sup

αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
,
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and

sup
gt∈B(Y)

−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂i

t(dy)

→ sup
gt∈B(Y)

−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

as i → ∞. Noting that

0 ≤ sup
i≥1,t∈[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂i
t
⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂
i
t)µ̂t(dx)

}
< +∞

and

0 ≤ sup
i≥1,t∈[0,T ]

sup
gt∈RY

{
−
∫
Y

(
Lµ̂tgt(·)(y)

+

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂i

t(dy)

}
< +∞,

using the bounded convergence theorem, we obtain that I∗(µ̂, θ̂i) → I∗(µ̂, θ̂) as i → ∞. Thanks

to Remark 3.2, this completes the proof of the lemma.

We now extend the conclusion of the previous lemma to the case when the mapping [0, T ] ∋
t 7→ µt ∈ M1(X ) is not necessarily Lipschitz continuous.

Lemma 3.5. Let ν ∈ M1(X ) and let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞]

be a subsequential rate function such that Ĩ(µ, θ) = +∞ unless µ0 = ν. Suppose that (µ̂, θ̂) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)) is such that I∗(µ̂, θ̂) < +∞, and inft∈[δ,T ] minx∈X µ̂t(x) > 0

for all δ > 0. Then Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

Proof. Let us first suppose that the mapping t 7→ µ̂t is locally Lipschitz continuous at t = 0 so

that supt∈[0,η] ∥ ˙̂µt∥ < +∞ for some η > 0. Define a sequence of paths µ̂i, i ≥ 1, by µ̂i
0 = µ̂0, and

˙̂µi
t =

˙̂µt1{∥ ˙̂µt∥≤i} + Λ̄∗
µ̂i
t,m̂t

µ̂i
t1{∥ ˙̂µt∥>i}, t ∈ [0, T ].

Since I∗(µ̂, θ̂) < +∞, by Lemma 3.1, it follows that the mapping t 7→ µ̂t is absolutely continuous

and by the dominated convergence theorem one easily concludes that µ̂i
t → µ̂t as i → ∞

uniformly in t ∈ [0, T ]. Thus, by the assumption inft∈[δ,T ] minx∈X µ̂t(x) > 0 for all δ > 0,
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it follows that µ̂i ∈ D([0, T ],M1(X )) for all i sufficiently large. Note that (µ̂i, θ̂) satisfies

the conditions of Lemma 3.4 and hence Ĩ(µ̂i, θ̂) = I∗(µ̂i, θ̂) for all i ≥ 1, that µ̂i → µ̂ in

D([0, T ],M1(X )) as i → ∞, and that µ̂i
t = µ̂t for all t ∈ [0, η] for all sufficiently large i.

Let us now show that I∗(µ̂i, θ̂) → I∗(µ̂i, θ̂) as i → ∞. By the arguments similar to those

used in the proof of Lemma 3.4, using Berge’s maximum theorem, for each t ∈ [0, T ], the

mapping

u 7→ sup
gt∈B(Y)

−
∫
Y

(
Lugt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(u)

)
m̂t(dy)

is continuous on M1(X ), and hence

sup
gt∈B(Y)

−
∫
Y

(
Lµ̂i

t
gt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂t(dy)

→ sup
gt∈B(Y)

−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

as i → ∞. Therefore, by the bounded convergence theorem, we have∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂i

t
gt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂t(dy)

}
dt

→
∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

}
dt

as i → ∞.

For the slow component, define

Zi
t := sup

αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂t

µ̂i
t⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂t)µ̂

i
t(dx)

}
, t ∈ [0, T ],

and

Zt := sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
, t ∈ [0, T ].

Since I∗(µ̂, θ̂) < +∞ it follows that Zt < +∞ for almost all t ∈ [0, T ]. Thanks to the assumption
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inft∈[δ,T ] minx∈X µ̂t(x) > 0 for all δ > 0, using the Berge’s maximum theorem, for almost all

t ∈ [η, T ], we see that the mapping

u 7→ sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

u,m̂t
u⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(u, m̂t)u(dx)

}
onM1(X ) is continuous at µ̂t. Hence, noting that Z

i
t = Zt on t ∈ [0, η] for all i sufficiently large,

for all t ∈ [0, T ]∩{s ∈ [0, T ] : Zs < +∞} we have ˙̂µi
t =

˙̂µt for all i sufficiently large, and µ̂i
t → µ̂t

as i → ∞ uniformly in t ∈ [0, T ], it follows that for all t ∈ [0, T ] ∩ {s ∈ [0, T ] : Zs < +∞}
Zi

t → Zt as i → ∞. Let us now show the convergence of the corresponding integrals. Fix

t ∈ (0, T ] such that Zt < +∞ and let α̂i
t ∈ RX and α̂t ∈ RX attain the supremum in the

definition of Zi
t and Zt respectively. Whenever ∥ ˙̂µi

t∥ ≤ i, we have,

0 ≤ Zi
t = ⟨α̂i

t,
˙̂µi
t⟩ −

∑
(x,x′)∈EX

(exp{α̂i
t(x

′)− α̂i
t(x)} − 1)λ̄x,x′(µ̂i

t, m̂t)µ̂
i
t(x)

= ⟨α̂i
t,
˙̂µt⟩ −

∑
(x,x′)∈EX

(exp{α̂i
t(x

′)− α̂i
t(x)} − 1)λ̄x,x′(µ̂t, m̂t)µ̂t(x)

−
∑

(x,x′)∈EX

(exp{α̂i
t(x

′)− α̂i
t(x)} − 1)× (λ̄x,x′(µ̂i

t, m̂t)µ̂
i
t(x)− λ̄x,x′(µ̂t, m̂t)µ̂t(x))

≤ Zt −
∑

(x,x′)∈EX

(exp{α̂i
t(x

′)− α̂i
t(x)} − 1)× (λ̄x,x′(µ̂i

t, m̂t)µ̂
i
t(x)− λ̄x,x′(µ̂t, m̂t)µ̂t(x)).

(3.37)

Since µ̂i
t = µ̂t, t ∈ [0, η], for all large enough i, the second term above vanishes whenever

t ∈ [0, η]. Since µ̂i
t → µ̂t as i → ∞ uniformly in t ∈ [0, T ], the first order optimality condition

for (α̂i
t(x), x ∈ X ) (see (3.33)) implies that, for some constant cη > 0, we have

max
(x,x′)∈EX

exp{α̂i
t(x

′)− α̂i
t(x)} ≤ cη(1 + ∥ ˙̂µt∥)

whenever t ∈ [η, T ] ∩ {s ∈ [0, T ] : Zs < +∞}. In particular, the right hand side of (3.37) is

integrable. Hence, noting that Zi
t = 0 in the alternative case when ∥ ˙̂µt∥ > i, by an application

of the dominated convergence theorem, we have that∫
[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂t

µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂t)µ̂

i
t(dx)

}
dt
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converges to∫
[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
dt

as i → ∞. Hence, combining the convergences for the slow and the fast components, we have

I∗(µ̂i, θ̂) → I∗(µ̂, θ̂) as i → ∞. Further, by Remark 3.2, it follows that Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

In the general case when the mapping t 7→ µ̂t is not locally Lipschitz continuous at t = 0,

using arguments similar to those used in the proof of Lemma 3.3, one constructs a sequence

τ̂ i, i ≥ 1, and a sequence of elements (µ̂i, θ̂i) ∈ D([0, T ],M1(X )) × D↑([0, T ],M(Y)), i ≥ 1,

such that τ̂ i → 0 as i → ∞, supt∈[0,τ̂ i] ∥ ˙̂µi
t∥ < +∞ (therefore the mapping t 7→ µ̂i

t is locally

Lipschitz continuous at t = 0), (µ̂i, θ̂i) → (µ̂, θ̂) in D([0, T ],M1(X )) × D↑([0, T ],M(Y)) as

i → ∞, µ̂i
t = µ̂t+1/i−τ̂ i and m̂i

t = m̂t+1/i−τ̂ i for all t ∈ [τ̂ i, T ], and∫
[0,τ̂ i]∪[T+1/i−τ̂ i,T ]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂

i
t
µ̂i
t⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂

i
t)µ̂

i
t(dx)

}
dt

+

∫
[0,τ̂ i]∪[T+1/i−τ̂ i,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂i

t
gt(·)(y)

+

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂i

t(dy)

}
dt

converges to 0 as i → ∞ (by using the small cost construction of constant velocity paths).

Based on what we have already shown for paths that are locally Lipschitz continuous at t = 0,

we see that Ĩ(µ̂i, θ̂i) = I∗(µ̂i, θ̂i) for all i ≥ 1. Again, using arguments similar to those used

in the proof of Lemma 3.3, we conclude that I∗(µ̂i, θ̂i) → I∗(µ̂, θ̂) as i → ∞. Once again, by

Remark 3.2, we have Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂). This completes the proof of the lemma.

We finally show that Ĩ(µ, θ) = I∗(µ, θ) for all (µ, θ) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)),

by allowing the path µ to hit the boundary of M1(X ).

Theorem 3.9. Let ν ∈ M1(X ) and let Ĩ : D([0, T ],M1(X )) × D↑([0, T ],M(Y)) → [0,+∞]

be a subsequential rate function such that Ĩ(µ, θ) = +∞ unless µ0 = ν. Then, for all (µ̂, θ̂) ∈
D([0, T ],M1(X ))×D↑([0, T ],M(Y)), we have Ĩ(µ̂, θ̂) = I∗(µ̂, θ̂).

Proof. Since Ĩ(µ, θ) ≥ I∗(µ, θ) for all (µ, θ) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)), it suffices to

focus on a (µ̂, θ̂) ∈ D([0, T ],M1(X ))×D↑([0, T ],M(Y)) such that I∗(µ̂, θ̂) < +∞ and µ̂0 = ν.
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By Lemma 3.1, we have that the mapping [0, T ] ∋ t 7→ µ̂t ∈ M1(X ) is absolutely continuous.

In particular, ˙̂µt exists for almost all t ∈ [0, T ] and µ̂t = ν +
∫
[0,t]

˙̂µsds for all t ∈ [0, T ].

We shall construct a sequence of paths µ̂i ∈ D([0, T ],M1(X )), i ≥ 1, such that µ̂i → µ̂ in

D([0, T ],M1(X )) as i → ∞, Ĩ(µ̂i, θ̂) = I∗(µ̂, θ̂) for all i ≥ 1, and I∗(µ̂i, θ̂) → I∗(µ̂, θ̂) as i → ∞.

Let εi(x) =
µ̂1/i(x)+1/i

1+|X |/i , x ∈ X and i ≥ 1. Using arguments similar to those used in the proof

of Lemma 3.3, we first construct a sequence of times τ̂ i, i ≥ 1, and a sequence of piecewise

constant velocity trajectories µ̂i
t, t ∈ [0, τ̂ i], with the property that µ̂i

0 = µ̂0 for all i ≥ 1,

µ̂i
τ̂ i(x) = εi(x) for all x ∈ X and i ≥ 1, τ̂ i → 0 as i → ∞, and∫

[0,τ̂ i]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂t

µ̂i
t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂t)µ̂

i
t(dx)

}
dt → 0 (3.38)

as i → ∞. We then define the path µ̂i
t on t ∈ (τ̂ i, T ] by

µ̂i
t(x) =

µ̂t+1/i−τ̂ i(x) + 1/i

1 + |X |/i
, x ∈ X .

Clearly, µ̂i
t → µ̂t as i → ∞ uniformly in t ∈ [0, T ] and hence µ̂i → µ̂ in D([0, T ],M1(X )) as

i → ∞. Note that (µ̂i, θ̂) satisfies the conditions of Lemma 3.5 and hence we have Ĩ(µ̂i, θ̂) =

I∗(µ̂i, θ̂) for all i ≥ 1.

We now show that I∗(µ̂i, θ̂) → I∗(µ̂, θ̂) as i → ∞. Using arguments similar to those used in

the proof of Lemma 3.5, it is easy to show that∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂i

t
gt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂
i
t)

)
m̂t(dy)

}
dt

→
∫
[0,T ]

sup
gt∈B(Y)

{
−
∫
Y

(
Lµ̂tgt(·)(y) +

∫
EY

τ(Dgt(y,∆))γy,y+d∆(µ̂t)

)
m̂t(dy)

}
dt (3.39)

as i → ∞.

To show convergence of the integral corresponding to the slow process, define

Zi
t := sup

αt∈RX

{
⟨αt, ˙̂µ

i
t−1/i+τ̂ i − Λ̄∗

µ̂i
t−1/i+τ̂ i

,m̂t
µ̂i
t−1/i+τ̂ i⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t−1/i+τ̂ i , m̂t)µ̂

i
t−1/i+τ̂ i(dx)

}
,
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t ∈ [1/i, T + 1/i− τ̂ i], and

Zt := sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
, t ∈ [0, T ].

Note the shift in the time index in the definition of Zi
t to enable direct comparison between Zt

and Zi
t . For t ∈ [1/i, T ], we then have

Zi
t =

1

1 + |X |/i
sup

αt∈RX

{
⟨αt, ˙̂µt⟩

−
∑

(x,x′)∈EX

(exp{αt(x
′)− αt(x)} − 1)λ̄x,x′(µ̂i

t−1/i+τ̂ i , m̂t)(µ̂t(x) + 1/i)

}
.

The objective function above can be simplified as

⟨αt, ˙̂µt⟩ −
∑

(x,x′)∈EX

(exp{αt(x
′)− αt(x)} − 1)λ̄x,x′(µ̂i

t−1/i+τ̂ i , m̂t)(µ̂t(x) + 1/i)

= ⟨αt, ˙̂µt⟩ −
∑

(x,x′)∈EX

(exp{αt(x
′)− αt(x)} − 1)λ̄x,x′(µ̂t, m̂t)µ̂t(x)

−
∑

(x,x′)∈EX

(exp{αt(x
′)− αt(x)} − 1)

[
(λ̄x,x′(µ̂i

t−1/i+τ̂ i , m̂t)− λ̄x,x′(µ̂t, m̂t))µ̂t(x)

+
λ̄x,x′(µ̂i

t−1/i+τ̂ i , m̂t)

i

]
≤ ⟨αt, ˙̂µt⟩ −

∑
(x,x′)∈EX

(exp{αt(x
′)− αt(x)} − 1)λ̄x,x′(µ̂t, m̂t)µ̂t(x)

−
∑

(x,x′)∈EX

exp{αt(x
′)− αt(x)}

(
− cLµ̂t(x)

i
+

c

i

)
+ |EX |

(
cL + C

i

)
;

here c = min(x,x′)∈X miny∈Y minξ∈M1(X ) λx,x′(ξ, y), C = max(x,x′)∈X maxy∈Y maxξ∈M1(X ) λx,x′(ξ, y),

cL = max(x,x′)∈EX maxy∈Y cx,x
′,y

L where cx,x
′,y

L is the Lipschitz constant of λx,x′(·, y), (x, x′) ∈
EX , y ∈ Y , and the last inequality is a consequence of assumption (C2). Fix t ∈ [1/i, T+1/i−τ̂ i]

with Zt < +∞ and let (α̂i
t(x), x ∈ X ) ∈ RX denote the optimiser in the definition of Zi

t . Then
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the above computation gives us

Zi
t ≤

1

1 + |X |/i

⟨α̂i
t,
˙̂µt⟩ −

∑
(x,x′)∈EX

(exp{α̂i
t(x

′)− α̂i
t(x)} − 1)λ̄x,x′(µ̂t, m̂t)µ̂t(x)


− 1

1 + |X |/i

 ∑
(x,x′)∈EX

exp{α̂i
t(x

′)− α̂i
t(x)}

(
− cLµ̂t(x)

i
+

c

i

)
+ |EX |

(
cL + C

i

)
≤ 1

1 + |X |/i
Zt

− 1

1 + |X |/i

 ∑
(x,x′)∈EX

exp{α̂i
t(x

′)− α̂i
t(x)}

(
− cLµ̂t(x)

i
+

c

i

)
+ |EX |

(
cL + C

i

) .

If µ̂t(x) < c/cL for some x ∈ X , we see that all the terms in the summation corresponding to

the edges (x, x′) ∈ EX are negative. On the other hand, if µ̂t(x) > c/cL, noting that τ̂ i → 0

as i → ∞ and the convergence of µ̂i
t to µ̂t as i → ∞ uniformly in t ∈ [0, T ], the first order

optimality condition for (α̂i
t(x), x ∈ X ) implies that, for some constant c2 > 0,

max
x′∈X :(x,x′)∈EX

exp{α̂i
t(x

′)− α̂i
t(x)} ≤ c2(1 + ∥ ˙̂µt∥),

and hence for all t ∈ [1/i, T + 1/i− τ̂ i] with Zt < +∞, we obtain that

Zi
t ≤

1

1 + |X |/i
{Zt + c2|EX |(1 + ∥ ˙̂µt∥) + (cL + C)}.

Hence by the dominated convergence theorem, we see that∫
[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µ

i
t − Λ̄∗

µ̂i
t,m̂t

µ̂i
t⟩

−
∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂
i
t, m̂t)µ̂

i
t(dx)

}
× 1{t≥τ̂ i}dt

converges to∫
[0,T ]

sup
αt∈RX

{
⟨αt, ˙̂µt − Λ̄∗

µ̂t,m̂t
µ̂t⟩ −

∫
X×EX

τ(Dαt(x,∆))λ̄x,x+d∆(µ̂t, m̂t)µ̂t(dx)

}
dt

as i → ∞. This along with the convergences (3.38) and (3.39) implies that I∗(µ̂i, θ̂) → I∗(µ̂, θ̂)

as i → ∞. The procedure of Remark 3.2 then completes the proof of the theorem.
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3.7 Completing the Proof of Theorem 3.1

We finally complete the proof of Theorem 3.1 by extending the conclusion of Theorem 3.9 to

all subsequential rate functions Ĩ, i.e. we remove the restriction that, for some ν ∈ M1(X ),

Ĩ(µ, θ) = +∞ unless µ0 = ν.

Proof of Theorem 3.1. Fix ν ∈ M1(X ) and suppose that {µN , N ≥ 1} is such that

lim supN→∞
1
N
logP (|µN(0) − ν| ≥ ε) = −∞ for each ε > 0. By Theorem 3.4, the family

{(µN , θN), N ≥ 1} is exponentially tight in D([0, T ],M1(X )) × D↑([0, T ],M(Y)). Therefore,

there exists a subsequence {Nk, k ≥ 1} of N such that {(µNk , θNk), k ≥ 1} satisfies the LDP

with rate function Ĩ (see, for example, Dembo and Zeitouni [29, Lemma 4.1.23]); by the above

condition on the family {µN} and by the contraction principle, we see that Ĩ(µ, θ) = +∞ unless

µ0 = ν. Therefore, by Theorem 3.9, Ĩ = I∗ on D([0, T ],M1(X ))×D↑([0, T ],M(Y)). Hence Ĩ is

uniquely determined for all such subsequences, and it follows that the family {(µN , θN), N ≥ 1}
satisfies the LDP with rate function I∗ (see, for example, Dembo and Zeitouni [29, Exer-

cise 4.4.15 (b)]) defined as follows: I∗(µ, θ) is defined by (3.7) whenever µ is such that µ(0) = ν,

and I∗(µ, θ) = +∞ otherwise.

In the general case when {µN(0)} satisfies the LDP on M1(X ) with rate function I0, let p
(N)

νN

denote the regular conditional distribution of (µN , θN) on D([0, T ],M1(X ))×D↑([0, T ],M(Y))

given µN(0) = νN ∈ MN
1 (X ). By the above argument, whenever νN → ν in M1(X ),

p
(N)

νN
satisfies the LDP on D([0, T ],M1(X )) × D↑([0, T ],M(Y)) with rate function I∗(µ, θ) +

∞1{µ(0)̸=ν}. Therefore, the family {(µN , θN), N ≥ 1} satisfies the LDP on D([0, T ],M1(X ))×
D↑([0, T ],M(Y)) with rate function I0(µ(0)) + I∗(µ, θ) (see, for example, Chaganty [24]). This

completes the proof of Theorem 3.1.
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Chapter 4

Large Deviations of the Invariant

Measure of Countable-State

Mean-Field Models

4.1 The setting and main results

4.1.1 Introduction

For a broad class of Markov processes such as small-noise diffusions, finite-state mean-field

models, simple exclusion processes, etc., it is well-known that the Freidlin-Wentzell quasipo-

tential is the rate function that governs the large deviation principle (LDP) for the family of

invariant measures [37, 80, 15, 35]. The quasipotential is the minimum cost (arising from the

rate function for a process-level large deviation principle) associated with trajectories of ar-

bitrary but finite duration, with fixed initial and terminal conditions. We begin this chapter

with two counterexamples of independently evolving countable-state particle systems for which

the quasipotential is not the rate function for the family of invariant measures. The family of

invariant measures of these counterexamples satisfy the LDP with a suitable relative entropy as

its rate function, and we show that the quasipotential is not the same as this relative entropy.

Specifically, we show that there are points in the state space where the rate function is finite,

but the quasipotential is infinite. These points cannot be reached easily via trajectories of

arbitrary but finite time duration. However the barriers to reach these points are surmounted

in the stationary regime. There are however some sufficient conditions, at least on a family of

such countable-state interacting particle systems, where the Freidlin-Wentzell quasipotential is

indeed the correct rate function; this will be the main result of this chapter. Intuitively, the
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sufficient conditions cut-down the speed of outward excursions and ensure that the insurmount-

able barriers for the finite horizon trajectories continue to be insurmountable in the stationary

regime.

Before we describe the counterexamples and the main result, let us introduce some notations

and describe the model of a countable-state mean-field interacting particle system. Let Z denote

the set of non-negative integers and let (Z, E) denote a directed graph on Z. Let M1(Z) denote

the space of probability measures on Z equipped with the total variation metric. For each

N ≥ 1, let MN
1 (Z) ⊂ M1(Z) denote the set of probability measures on Z that can arise as

empirical measures of N -particle configurations on ZN . For each N ≥ 1, we consider a Markov

process with the infinitesimal generator acting on functions f on MN
1 (Z):

L Nf(ξ) :=
∑

(z,z′)∈E

Nξ(z)λz,z′(ξ)

[
f

(
ξ +

δz′

N
− δz

N

)
− f(ξ)

]
, ξ ∈ MN

1 (Z); (4.1)

here λz,z′ : M1(Z) → R+, (z, z
′) ∈ E , are given functions that describe the transition rates

and δ denotes the Dirac measure. Such processes arise as the empirical measure of weakly

interacting Markovian mean-field particle systems where the evolution of the state of a particle

depends on the states of the other particles only through the empirical measure of the states of

all the particles. Under suitable assumptions on the model, the martingale problem for L N is

well posed and the associated Markov process possesses a unique invariant probability measure

℘N . This chapter highlights certain nuances associated with the large deviation principle for

the sequence {℘N , N ≥ 1} on M1(Z).

Fix T > 0 and let µN
νN

denote the Markov process with initial condition νN ∈ MN
1 (Z) whose

infinitesimal generator is L N . Its sample paths are elements of D([0, T ],MN
1 (Z)), the space of

MN
1 (Z)-valued functions on [0, T ] that are right-continuous with left limits equipped with the

Skorohod topology. Such processes have been well studied in the past. Under mild conditions

on the transition rates, when νN → ν in M1(Z) as N → ∞, it is well-known that the family

{µN
νN
, N ≥ 1} converges in probability, in D([0, T ],M1(Z)), as N → ∞ to the mean-field limit1:

µ̇(t) = Λ∗
µ(t)µ(t), µ(0) = ν, t ∈ [0, T ]; (4.2)

here Λξ, ξ ∈ M1(Z), denotes the rate matrix2 when the empirical measure is ξ, and µ̇(t) denotes

the derivative of µ at time t. The above dynamical system on M1(Z) is called the McKean-

1See McKean [59] in the context of interacting diffusions and Bordenave et al. [14] in the context of countable-
state mean-field models.

2For a ξ ∈ M1(Z), Λξ(z, z
′) = λz,z′(ξ) when (z, z′) ∈ E , Λξ(z, z

′) = 0 when (z, z′) /∈ E , Λξ(z, z) =
−
∑

z′ ̸=z λz,z′(ξ), and Λ∗
ξ denotes the transpose of Λξ.
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Figure 4.1: Transition rates of an M/M/1 queue.

Vlasov equation. This mean-field convergence allows one to view the process µN
νN

as a small

random perturbation of the dynamical system (4.2). The starting point of our study of the

asymptotics of {℘N , N ≥ 1} is the process-level LDP for {µN
νN
, νN ∈ MN

1 (Z), N ≥ 1}, whenever
νN converges to ν in M1(Z). This LDP was established by Léonard [55] when the initial

conditions are fixed, and by Borkar and Sundaresan [15] when the initial conditions converge1

in M1(Z). The rate function of this LDP is governed by “costs” associated with trajectories on

[0, T ] with initial condition ν, which we denote by S[0,T ](φ|ν), φ ∈ D([0, T ],M1(Z)) (see (4.5)

for its definition).

We assume that ξ∗ is the unique globally asymptotically stable equilibrium of (4.2). Define

the Freidlin-Wentzell quasipotential

V (ξ) := inf{S[0,T ](φ|ξ∗) : φ(0) = ξ∗, φ(T ) = ξ, T > 0}, ξ ∈ M1(Z). (4.3)

From the theory of large deviations of the invariant measure of Markov processes [37, 80, 23, 15],

V is a natural candidate for the rate function of the family {℘N , N ≥ 1}.

4.1.2 Two counterexamples

We begin with two counterexamples for which V is not the rate function for the family of

invariant measures.

4.1.2.1 Non-interacting M/M/1 queues

Consider the graph (Z, EQ) whose edge set EQ consists of forward edges {(z, z + 1), z ∈ Z}
and backward edges {(z, z − 1), z ∈ Z \ {0}} (see Figure 4.1). Let λf and λb be two positive

1Often, as done in [15], one lets νN be random, and only requires νN → ν in distribution, where ν is
deterministic. For simplicity, we restrict νN to be deterministic.
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numbers. Consider the generator LQ acting on functions f on Z by

LQf(z) :=
∑

z′:(z,z′)∈EQ

λz,z′(f(z
′)− f(z)), z ∈ Z,

where λz,z+1 = λf for each z ∈ Z and λz,z−1 = λb for each z ∈ Z \ {0}. When λf < λb, the

invariant probability measure associated with this Markov process is

ξ∗Q(z) :=

(
1− λf

λb

)(
λf

λb

)z

, z ∈ Z.

For each N ≥ 1, we consider N particles, each of which evolves independently as a Markov

process on Z with the infinitesimal generator LQ. That is, the particles are independent

M/M/1 queues. It is easy to check that the empirical measure of the system of particles is also

a Markov process on the state space MN
1 (Z) and it possesses a unique invariant probability

measure, which we denote by ℘N
Q .

On one hand, it is straightforward to see that the family {℘N
Q , N ≥ 1} satisfies the LDP

on M1(Z). Indeed, under stationarity, the state of each particle is distributed as ξ∗Q. As a

consequence, ℘N
Q is the law of the random variable 1

N

∑N
n=1 δζn on M1(Z), where ζ1, . . . , ζN

are independent and identically distributed (i.i.d.) as ξ∗Q. Therefore, by Sanov’s theorem [29,

Theorem 6.2.10], {℘N
Q , N ≥ 1} satisfies the LDP with the rate function I(·∥ξ∗Q), where I :

M1(Z)×M1(Z) → [0,∞] is the relative entropy defined by1

I(ζ∥ν) :=


∑
z∈Z

ζ(z) log

(
ζ(z)

ν(z)

)
, if ζ ≪ ν,

∞, otherwise.

(4.4)

On the other hand, it is natural to conjecture that the rate function for the family {℘N
Q , N ≥ 1}

is given by the quasipotential (4.3) with ξ∗ replaced by ξ∗Q. However, as discussed in the next

paragraph, the quasipotential is not the same as I(·∥ξ∗Q). Hence, from the uniqueness of the

large deviations rate function [29, Lemma 4.1.4], the quasipotential does not govern the rate

function for the family {℘N
Q , N ≥ 1}.

We now provide some intuition on why the quasipotential is not the rate function in the

example under consideration. For a formal proof, see Section 4.8. Let ϑ(z) = z log z, and let

ι(z) = z, z ∈ Z. Using the fact that ξ∗Q has geometric decay, it can be checked that I(ξ∥ξ∗Q) is
finite if and only if the first moment of ξ (denoted by ⟨ξ, ι⟩) is finite. However it turns out that

1We use the convention 0 log 0 = 0.
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V (ξ) (i.e., the quantity in (4.3) with ξ∗ replaced by ξ∗Q) is finite if and only if the ϑ-moment of

ξ (denoted by ⟨ξ, ϑ⟩) is finite. In particular, if we consider a ξ ∈ M1(Z) whose first moment is

finite but ϑ-moment is infinite then V (ξ) ̸= I(ξ∥ξ∗Q). Let ε > 0, ξ ∈ M1(Z) be such that ⟨ξ, ι⟩ <
∞ but ⟨ξ, ϑ⟩ = ∞, and consider the ε-neighbourhood of ξ in M1(Z). By Sanov’s theorem, the

probability of this neighbourhood under ℘N
Q is of the form exp{−N(I(ξ∥ξ∗Q) + o(1))}. For a

fixed T > 0, let us now try to estimate the probability of µN
νN
(T ) being in this neighbourhood

when νN is in a small neighbourhood of ξ∗Q. If the process µ
N is initiated at a νN near ξ∗Q, then

the probability that the random variable µN
νN
(T ) is in the ε-neighbourhood of ξ is at most

exp

{
−N

(
inf

{ξ′:dist(ξ,ξ′)≤ε}
V (ξ′) + o(1)

)}
.

Since V is lower semicontinuous (we prove this in Lemma 4.7), we must have

inf
{ξ′:dist(ξ,ξ′)≤ε}

V (ξ′) → ∞ as ε → 0.

Hence we can choose an ε small enough so that inf{ξ′:dist(ξ,ξ′)≤ε} V (ξ′) > 2I(ξ∥ξ∗Q). For this ε,

the probability that µN
νN
(T ) lies is the ε-neighbourhood of ξ is upper bounded by exp{−N ×

(2I(ξ∥ξ∗Q) + o(1))}, which is smaller than exp{−N(I(ξ∥ξ∗Q) + o(1))}, even in the exponential

scale, for large enough N . That is, for any arbitrary but fixed T , we can find a small neigh-

bourhood of ξ such that the probability that µN
νN
(T ) lies in that neighbourhood is smaller than

what we expect to see in the stationary regime. In other words, there are some barriers in

M1(Z) that cannot be surmounted in any finite time, yet these barriers can be crossed in the

stationary regime. These barriers indicate that, to obtain the correct stationary regime prob-

ability of a small neighbourhood of ξ using the dynamics of µN
νN
, one should wait longer than

any fixed time horizon. That is, one should consider the random variable µN
νN
(T (N)), where

T (N) is a suitable function of N , and estimate the probability that µN
νN
(T (N)) belongs to a

small neighbourhood of ξ. However it is not straightforward to obtain such estimates from the

process-level large deviation estimates of µN
νN

since the latter are usually available for a fixed

time duration.

There are natural barriers in the context of finite-state mean-field models when the lim-

iting dynamical system has multiple (but finitely many) stable equilibria (see Section 2.3 in

Chapter 2). In such situations, passages from a neighbourhood of one equilibrium to a neigh-

bourhood of another take place over time durations of the form exp{N ×O(1)} where N is the

number of particles1. Interestingly, these barriers can be surmounted using trajectories of finite

1O(1) refers to a bounded sequence, and ω(1) refers to a sequence that goes to ∞.
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Figure 4.2: Transition rates of a wireless node.

time durations; i.e., for any fixed T , the probability that the empirical measure process reaches

a neighbourhood of an equilibrium at time T when it is initiated in a small neighbourhood

of another equilibrium is of the form exp{−N × O(1)}. In contrast, in the case of the above

counterexample, the barriers cannot be surmounted in finite time durations; for any fixed T ,

the probability that µN(T ) reaches a small neighbourhood of a point in M1(Z) with finite

first moment but infinite ϑ-moment when it is initiated from a neighbourhood of ξ∗Q is of the

form exp{−N × ω(1)}. Hence we anticipate that the barriers that we encounter in the above

counterexample are somehow more difficult to surmount than those that arise in the case of

finite-state mean-field models with multiple stable equilibria.

4.1.2.2 Non-interacting nodes in a wireless network

We provide another counterexample where the issue is similar. Consider the graph (Z, EW )

whose edge set EW consists of forward edges {(z, z+1), z ∈ Z} and backward edges {(z, 0), z ∈
Z \ {0}} (see Figure 4.2). Let λf and λb be positive numbers. Consider the generator LW

acting on functions f on Z by

LWf(z) :=
∑

z′:(z,z′)∈EW

λz,z′(f(z
′)− f(z)), z ∈ Z,

where λz,z+1 = λf for each z ∈ Z and λz,0 = λb for each z ∈ Z \ {0}. The invariant probability
measure associated with this Markov process is

ξ∗W (z) :=
λb

λf + λb

(
λf

λf + λb

)z

, z ∈ Z.

Similar to the previous example, for each N ≥ 1, we consider N particles, each of which

evolves independently as a Markov process on Z with the infinitesimal generator LW . It is

easy to check that the empirical measure of the system of particles possesses a unique invariant

probability measure, which we denote by ℘N
W . Under stationarity, the state of each particle

is distributed as ξ∗W . As a consequence, ℘N
W is the law of the random variable 1

N

∑N
n=1 δζn on

M1(Z), where ζ1, . . . , ζN are i.i.d. ξ∗W . Hence, by Sanov’s theorem, the family {℘N
W , N ≥ 1}
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satisfies the LDP with the rate function I(·∥ξ∗W ). As we show in Section 4.8, in this example

too, the quasipotential (4.3) with ξ∗ replaced by ξ∗W is not the same as I(·∥ξ∗W ). As in the

previous example, there are points ξ where V (ξ) = ∞ but I(ξ∥ξ∗Q) < ∞, points ξ that have a

finite first moment but infinite ϑ-moment. Once again, the quasipotential does not govern the

rate function for the family {℘N
W , N ≥ 1}.

4.1.3 Assumptions and main result

We now provide some assumptions on the model of countable-state mean-field interacting par-

ticle systems that ensure that the barriers in M1(Z) that are insurmountable using trajectories

of arbitrary but finite time duration remain insurmountable in the stationary regime as well.

Under these assumptions, we prove the main result of this chapter, i.e., the sequence of invariant

measures {℘N , N ≥ 1} satisfies the LDP with rate function V .

4.1.3.1 Assumptions

Our first set of assumptions is on the mean-field interacting particle system (i.e., on the gener-

ator L N defined in (4.1)).

(E1) The edge set is given by E = {(z, z + 1), z ∈ Z} ∪ {(z, 0), z ∈ Z \ {0}}.

(E2) There exist positive constants λ and λ such that

λ

z + 1
≤ λz,z+1(ξ) ≤

λ

z + 1
, and λ ≤ λz,0(ξ) ≤ λ,

for each ξ ∈ M1(Z).

(E3) The functions (z + 1)λz,z+1(·), z ∈ Z, and λz,0(·), z ∈ Z \ {0}, are uniformly Lipschitz

continuous on M1(Z).

Note that assumption (E1) considers a specific transition graph (Figure 4.2) for each particle.

This graph arises in the contexts of random backoff algorithms for medium access in wireless

local area networks [51] and decentralised control of loads in a smart grid [60]. Assumption

(E2) ensures that the forward transition rates at state z decays as 1/z. This key assumption

cuts down the speed of outward excursions and enables us to overcome the issue described in

the counterexamples. To highlight this, consider a modified example of Section 4.1.2.2 where

λz,z+1 = λf/(z + 1), z ∈ Z; the rest of the description remains the same. Let ξ̃W ∈ M1(Z)

denote the invariant probability measure associated with one particle. It can be checked that
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ξ̃W (z) is of the order of exp{−ϑ(z)}, unlike ξ∗W which has geometric decay. As a consequence,

I(ξ∥ξ̃W ) is finite if and only if the ϑ-moment of ξ is finite. Hence, by imposing (E2), we have

ensured that the barriers inM1(Z) that are insurmountable for finite time duration trajectories

continue to remain insurmountable in the stationary regime; this is the key property that enables

us to prove the main result of this chapter. Assumption (E3) is a uniform Lipschitz continuity

property for the transition rates which is required for the process-level LDP for µN
νN

to hold

and for the McKean-Vlasov equation (4.2) to be well-posed.

Our second set of assumptions is on the McKean-Vlasov equation (4.2). Let µν , ν ∈ M1(Z),

denote the solution to the limiting dynamics (4.2) with initial condition ν ∈ M1(Z). Recall

the function ϑ. Define KM := {ξ ∈ M1(Z) : ⟨ξ, ϑ⟩ ≤ M}, M > 0.

(F1) There exists a unique globally asymptotically stable equilibrium ξ∗ for the McKean-Vlasov

equation (4.2).

(F2) ⟨ξ∗, ϑ⟩ < ∞ and limt→∞ supν∈KM
⟨µν(t), ϑ⟩ = ⟨ξ∗, ϑ⟩ for each M > 0.

The first assumption above asserts that all the trajectories of (4.2) converge to ξ∗ as time be-

comes large. The proof of the LDP upper and lower bounds for the family {℘N , N ≥ 1} involves

construction of trajectories that start at suitable compact sets, reach the stable equilibrium ξ∗

using arbitrarily small cost, and then terminate at a desired point in M1(Z) starting from ξ∗.

All these are enabled by assumption (F1) (see more remarks about this assumption in Sec-

tion 4.1.4). The second assumption asserts that the ϑ-moment of the solution to the limiting

dynamics converges uniformly over initial conditions lying in sets of bounded ϑ-moment. In

the case of a non-interacting system that satisfies (E1) but with constant forward transition

rates (for example, see LW in Section 4.1.2.2), the analogue of this assumption can easily be

verified: the first moment of the solution to the limiting dynamics converges uniformly over

initial conditions lying in sets of bounded first moment. In fact, one can explicitly write down

the first moment of the solution to the limiting dynamics in this case and verify this assumption

easily. Assumption (F2) is the analogous statement for our mean-field system that satisfies the

1/z-decay of the forward transition rates in assumption (E2).

4.1.3.2 Main result

We now state the main result of this chapter, namely the LDP for the family of invariant

measures {℘N , N ≥ 1} under the assumptions (E1)–(E3) and (F1)–(F2).

We first assert the existence and uniqueness of the invariant measure ℘N for L N for each

N ≥ 1, and the exponential tightness of the family {℘N , N ≥ 1}.
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Proposition 4.1. Assume (E1) and (E2). For each N ≥ 1, L N admits a unique invariant

probability measure ℘N . Further, the family {℘N , N ≥ 1} is exponentially tight in M1(Z).

Recall the quasipotential V defined in (4.3). We now state the main result of this chapter.

Theorem 4.1. Assume (E1), (E2), (E3), (F1), and (F2). Then the family of probability

measures {℘N , N ≥ 1} satisfies the large deviation principle on M1(Z) with rate function V .

The proof of this result is carried out in Sections 4.4–4.7. We begin with the process-level

uniform LDP for µN
νN

over compact subsets of M1(Z); this uniform LDP gives us the large

deviation estimates for the process µN
νN

uniformly over the initial conditions νN lying in a

given compact set (see Definition 4.2 and Theorem 4.2). We prove the LDP for the family

{℘N , N ≥ 1} by transferring this process-level uniform LDP for µN
νN

over compact subsets of

M1(Z) to the stationary regime. The proof of the LDP lower bound (in Section 4.4) considers

specific trajectories and lower bounds the probability of small neighbourhoods of points in

M1(Z) under ℘N using the probability that the process µN
νN

remains close to these trajectories.

For the proof of the upper bound, we require certain regularity properties of the quasipotential.

These properties are established in Section 4.5. We first show a controllability1 property for

V : V (ξ) is finite if and only if ⟨ξ, ϑ⟩ < ∞. Using the lower bound proved in Section 4.4, we

then show that the level sets of V are compact subsets of M1(Z). Since M1(Z) is not locally

compact, this compactness-of-level-sets property implies that there are points in M1(Z) where

V is discontinuous. However we show the following small cost connection property: whenever

ξn → ξ∗ in M1(Z) and ⟨ξn, ϑ⟩ → ⟨ξ∗, ϑ⟩ as n → ∞, we have limn→∞ V (ξn) = V (ξ∗) = 0.

These properties of the quasipotential are then used to transfer the process-level uniform LDP

upper bound for µN
νN

(uniform over compact subsets of M1(Z)) to the LDP upper bound for

the family of invariant measures. The proof of the upper bound is carried out in Section 4.6.

Finally, we complete the proof of the theorem in Section 4.7.

While the proofs of our lower and upper bounds follow the general methodology of Sow-

ers [80], there are significant model-specific difficulties that arise in our context. The main

novelty in the proof of Theorem 4.1 is to establish the small cost connection property of the

quasipotential V under assumptions (E1)–(E3) and (F1)–(F2). That is, we can find trajecto-

ries of small cost that start at ξ∗ and end at points in M1(Z) whose ϑ-moment is not very

far from that of ξ∗. In the work of Sowers [80], this has been carried out by considering the

“straight-line” trajectory that connects the attractor to the nearby point under consideration.

Such a trajectory may not have small cost in our case since the mass transfer is restricted to

1This terminology is from Cerrai and Röckner [23].

116



the edges in E . We overcome this difficulty by considering a piecewise constant velocity mass

transfer via the edges in E . We then carefully estimate the cost of this trajectory and prove

the necessary small cost connection property. We also simplify the proof of the compactness

of the lower level sets of V ; while Sowers [81, Proposition 7] studies the minimisation of the

costs of trajectories over the infinite-horizon, we arrive at it by using the LDP lower bound and

the exponential tightness of the family {℘N , N ≥ 1}. We also remark that the methodology

of Sowers [80] has been used by Cerrai and Röckner [23] in the context of stochastic reaction

diffusion equations and by Cerrai and Paskal [21] in the context of two-dimensional stochastic

Navier-Stokes equations.

4.1.4 Discussion and future directions

The main result and the counterexamples suggest that in order for the family of invariant mea-

sures of a Markov process to satisfy the large derivation principle with rate function governed

by the Freidlin-Wentzell quasipotential, one must have some good properties on the model un-

der consideration. In the case of our main result, this goodness property was achieved by the

1/z-decay of the forward transition rates from assumption (E2). We use this assumption to

show the exponential tightness of the invariant measure over compact subsets with bounded

ϑ-moments. It also enables us to show the necessary regularity properties of the quasipotential

required to transfer the process-level large deviation result to the stationary regime. However

a general treatment of the LDP for the family of invariant measures of Markov processes (that

encompasses the cases of [80, 23, 21, 15, 35]), especially when the ambient state space is not

locally compact, is missing in the literature.

One of the assumptions that plays a significant role in the proof of our main result is

the existence of a unique globally asymptotically stable equilibrium for the limiting dynamics

(assumption (F1))1. In general, the limiting dynamical system (4.2) could possess multiple ω-

limit sets. In that case the approach of our proofs breaks down. A well-known approach to study

large deviations of the invariant measures in such cases is to focus on small neighbourhoods

of these ω-limit sets and then analyse the discrete time Markov chain that evolves on these

neighbourhoods. The LDP then follows from the estimates of the invariant measure of this

discrete time chain (see Freidlin andWentzell [37, Chapter 6, Section 4]). However this approach

requires the uniform LDP over open subsets of M1(Z), which is not yet available for our mean-

field model. If this can be established, along with the regularity properties of the quasipotential

1In the works of Sowers [80], Cerrai and Röckner [23], and Cerrai and Paskal [21], their model assumptions
ensure that (F1) holds.
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established in Section 4.5, one can not only use the above idea to extend our main result to the

case when the limiting dynamical system possesses multiple ω-limit sets but also to study exit

problems and metastability phenomena in our mean-field model.

Another definition of the quasipotential appears in the literature. It is given by the minimi-

sation of costs of the form S(−∞,0](φ) over infinite-horizon trajectories φ on (−∞, 0] such that

the terminal time condition φ(0) is fixed and φ(t) → ξ∗ as t → −∞ (see Sowers [80], Cerrai and

Röckner [23]). While it is clear that the above definition of the quasipotential is a lower bound

for V in (4.3), unlike in Sowers [80] and Cerrai and Röckner [23], we are not able to show that

the two definitions are the same. A proof of this equality, or otherwise, will add more insight

on the general case.

We remark that assumption (E3) does not play a role in the proof of our main result. It is

used to invoke the process-level LDP for µN
νN

(see Theorem 4.2) and the well-posedness of the

limiting dynamical system (4.2). If these two properties are established through some other

means then the proof of Theorem 4.1 holds verbatim without the need for assumption (E3).

Finally, we mention that a time-independent variational formula for the quasipotential is

available for some non-reversible models in statistical mechanics, see Bertini et al. [8, 9]. It

is not clear if the quasipotential V in (4.3) admits a time-independent variational form. This

would be an interesting direction to explore.

4.1.5 Related literature

Process-level large deviations of small-noise diffusion processes have been well studied in the

past. For finite-dimensional large deviation problems, see Freidlin and Wentzell [37, Chap-

ter 5], Liptser [57], Veretennikov [88], Puhalskii [73], and the references therein. For infinite-

dimensional problems where the state space is not locally compact, see Sowers [81] and Cerrai

and Röckner [22]. More recently, uniform large deviation principle (uniform LDP) for Banach-

space valued stochastic differential equations over the class of bounded and open subsets of the

Banach space have been studied by Salins et al. [79]. These have been used to study the exit

times and metastability in such processes, see Salins and Spiliopoulos [78]. While the above

works focus on diffusion processes, our work focuses on the stationary regime large deviations

of countable-state mean-field models with jumps. In the spirit of the small-noise problems

listed above, our process µN
νN

can be viewed as a small random perturbation of the dynamical

system (4.2) on M1(Z).

In the context of interacting particle systems, Dawson and Gärtner [26] established the

process-level LDP for weakly interacting diffusion processes, and Léonard [55] and Borkar and
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Sundaresan [15] extended this to mean-field interacting particle systems with jumps. In this

work, we focus on the stationary regime large deviations of mean-field models with jumps

when the state of each particle comes from a countable set. For small-noise diffusion process

on Euclidean spaces and finite-state mean-field models, since the state space (on which the

empirical measure process evolves) is locally compact, the process-level large deviation results

have been extended in a straightforward manner to the uniform LDP over the class of open

subsets of the space. Such uniform large deviation estimates have been used to prove the large

deviations of the invariant measure and the exit time estimates, see Freidlin and Wentzell [37,

Chapter 6] in the context of diffusion processes, Borkar and Sundaresan [15] and Chapter 2 of

this thesis in the context of finite-state mean-field models. One of the key ingredients in these

proofs is the continuity of the quasipotential. However in our case, the state space M1(Z)

is infinite-dimensional and not locally compact. Therefore, since the quasipotential (4.3) is

expected to have compact lower level sets, it cannot be continuous on M1(Z) unlike in the

finite-dimensional problems mentioned above. Hence the ideas presented in [15] are not directly

applicable to our context of the LDP for the family of invariant measures.

Large deviations of the family of invariant measures for small-noise diffusion processes on

non-locally compact spaces have also been studied in the past, see Sowers [80] and Cerrai and

Röckner [23]. They have a unique attractor for the limiting dynamics, and the proof essentially

involves conversion of the uniform LDP over the finite-time horizon to the stationary regime.

Martirosyan [58] studied a situation where the limiting dynamical system possesses multiple

attractors. For the study of large deviations of the family of invariant measures for simple

exclusion processes, see Bodineau and Giacomin [13] and Bertini et al. [9]. More recently, Farfán

et al. [35] extended this to a simple exclusion process whose limiting hydrodynamic equation

has multiple attractors. Their proof proceeds similar to the case of finite-dimensional diffusions

in Freidlin and Wentzell [37, Chapter 6, Section 4] by first approximating the process near the

attractors and then using the Khasminskii reconstruction formula [48, Chapter 4, Section 4].

In particular, it requires the uniform LDP to hold over open subsets of the state space. Since

their state space, although infinite-dimensional, is compact, the proof of the uniform LDP over

open subsets easily follows from the process-level LDP. Also, the compactness of the state space

simplifies the proofs of the small cost connection property from the attractors to nearby points,

a property needed in the Khasminskii reconstruction. Although we restrict our attention to the

case of a unique globally asymptotically stable equilibrium as in [80, 23], the main novelty of our

work is that we establish certain regularity properties of the quasipotential for countable-state

mean-field models with jumps which were not done in the past. We then use these properties

to prove the LDP for the family of invariant measures. Furthermore, we demonstrate two
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counterexamples where the stationary regime LDP’s rate functions are not governed by the usual

quasipotential. To the best of our knowledge, such examples where the LDP for the family of

invariant measures hold but there rate functions are not governed by the usual Freidlin-Wentzell

quasipotential are new. These examples are constructed in a way that the particle systems do

not possess the small cost connection property from the attractor to nearby points with finite

first moment but infinite ϑ-moment. On a related note, counterexamples are known in the

literature for small-noise Markov processes where the asymptotics of the spectral gap differs

from the natural candidate, which is a quantity analogous Λ defined in (2.9), see Miclo [63].

Large deviations of the family of invariant measure for a queueing network in a finite-

dimensional setting has been studied by Puhalskii [72]. Finally, large deviations of the family

of invariant measures for a stochastic process under some general conditions has been studied

by Puhalskii [74]. One of their conditions is the small cost connection property between any two

nearby points in the state space, which cannot be satisfied by our countable-state mean-field

model since our state space is not locally compact.

4.1.6 Organisation

This chapter is organised as follows. In Section 4.2, we provide preliminary results on the large

deviations over finite time horizons. The proof of the main result is carried out in Sections 4.3–

4.7. In Section 4.3, we prove the existence, uniqueness, and exponential tightness of the family

of invariant measures. In Section 4.4, we prove the LDP lower bound for the family of invariant

measures. In Section 4.5, we establish some regularity properties of the quasipotential V defined

in (4.3). In Section 4.6, we prove the LDP upper bound for the family of invariant measures.

In Section 4.7, we complete the proof of the main result. Finally in Section 4.8, we prove that

the quasipotential differs from the relative entropy (with respect to the globally asymptotically

stable equilibrium) for the two counterexamples discussed in Section 4.1.2.

4.2 Preliminaries

4.2.1 Frequently used notation

We first summarise the frequently used notation in the chapter. Let Z denote the set of

nonnegative integers and let (Z, E) denote a directed graph on Z. Let R∞ denote the infinite

product of R equipped with the topology of pointwise convergence (it is also viewed as the

space of real-valued functions on Z). Recall that M1(Z) denotes the space of probability
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measure on Z equipped with the total variation metric (denoted by d). This metric generates

the topology of weak convergence on M1(Z). By Scheffé’s lemma [32, Chapter 3, Section 2],

M1(Z) can be identified with the subset {x ∈ R∞ : xi ≥ 0∀i,
∑

i≥0 xi = 1} of R∞ with

the subspace topology. For each N ≥ 1, recall that MN
1 (Z) ⊂ M1(Z) denotes the space of

probability measures on Z that can arise as empirical measures of N -particle configurations on

ZN . Recall that ϑ(z) = z log z, z ∈ Z, with the convention that 0 log 0 = 0. Given f, g ∈ R∞,

let the bracket ⟨f, g⟩ denote limn→∞
∑n

k=0 f(k)g(k), whenever the limit exists. For M > 0,

define KM := {ξ ∈ M1(Z) : ⟨ξ, ϑ⟩ ≤ M}; by Prohorov’s theorem, KM is a compact subset of

M1(Z). Define K :=
⋃

M≥1 KM . Let ξ∗ ∈ M1(Z) denote the globally asymptotically stable

equilibrium for the McKean-Vlasov equation (4.2) (see assumption (F1)). For each ∆ > 0,

define

K(∆) := {ξ ∈ K : d(ξ∗, ξ) ≤ ∆ and |⟨ξ∗, ϑ⟩ − ⟨ξ, ϑ⟩| ≤ ∆};

note that K(∆) depends on ξ∗ as well (which we do not indicate for ease of readability). Recall

the functions τ and τ ∗ defined in Section 2.2, i.e., τ(u) := eu − u− 1, u ∈ R, and

τ ∗(u) :=


∞ if u < −1,

1 if u = −1,

(u+ 1) log(u+ 1)− u if u > −1.

For a complete and separable metric space (S, d0), A ⊂ S, and x ∈ S, let d0(x,A) denote
infy∈A d0(x, y). Let D([0, T ],S) denote the space of S-valued functions on [0, T ] that are right

continuous with left limits. It is equipped with the Skorohod topology which makes it a complete

and separable metric space (see, for example, Ethier and Kurtz [34, Chapter 3]). Let ρ denote a

metric onD([0, T ],S) that generates the Skorohod topology. An element ofD([0, T ],S) is called
a “trajectory”, and we shall refer to the process-level large deviations rate function evaluated

on a trajectory as the “cost” associated with that trajectory. For a trajectory φ, let both φt

and φ(t) denote the evaluation of φ at time t. For N ≥ 1 and ν ∈ MN
1 (Z), let PN

ν denote the

solution to the D([0, T ],MN
1 (Z))-valued martingale problem for L N with initial condition ν

(whenever the martingale problem for L N is well-posed). Let µN
ν denote the random element

of D([0, T ],MN
1 (Z)) whose law is PN

ν . For each ξ ∈ M1(Z), let Lξ denote the generator acting

on functions f on Z by

f 7→ Lξ(z) :=
∑

z′:(z,z′)∈E

λz,z′(ξ)(f(z
′)− f(z)), z ∈ Z,
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i.e., the generator of the single particle evolving on Z under the static mean-field ξ.

Let C1
0([0, T ] × Z) denote the space of real-valued functions on [0, T ] × Z with compact

support that are continuously differentiable in the first argument. Given a trajectory φ ∈
D([0, T ],M1(Z)) such that the mapping [0, T ] ∋ t 7→ φt ∈ M1(Z) is absolutely continuous

(see Dawson and Gärtner [26, Section 4.1]), one can define φ̇t ∈ R∞ for almost all t ∈ [0, T ]

such that

⟨φt, ft⟩ = ⟨φ0, f0⟩+
∫
[0,t]

⟨φ̇u, fu⟩du+

∫
[0,t]

⟨φu, ∂ufu⟩du

holds for each f ∈ C1
0([0, T ]×Z) and t ∈ [0, T ].

For a set A let ∼A denote the complement of A. For two numbers a and b, let a ∨ b denote

maximum of a and b. For a metric space S, let B(S) denote the Borel σ-field on S. Finally,

constants are denoted by C and their values may be different in each occurrence.

4.2.2 Process-level large deviations

We first recall the definition of the large deviation principle for a family of random variables

indexed by one parameter.

Definition 4.1 (Large deviation principle). Let (S, d0) be a metric space. We say that a family

{XN , N ≥ 1} of S-valued random variables defined on a probability space (Ω,F , P ) satisfies

the large deviation principle with rate function I : S → [0,∞] if

• (Compactness of level sets). For any s ≥ 0, Φ(s) := {x ∈ S : I(x) ≤ s} is a compact

subset of S;

• (LDP lower bound). For any γ > 0, δ > 0, and x ∈ S, there exists N0 ≥ 1 such that

P (d0(X
N , x) < δ) ≥ exp{−N(I(x) + γ)}

for any N ≥ N0;

• (LDP upper bound). For any γ > 0, δ > 0, and s > 0, there exists N0 ≥ 1 such that

P (d0(X
N ,Φ(s)) ≥ δ) ≤ exp{−N(s− γ)}

for any N ≥ N0.
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This definition is also used to study the large deviations of a family of probability measures.

For each N ≥ 1, let PN = P ◦ (XN)−1, the law of the random variable XN on (S, d0). We

say that the family of probability measures {PN , N ≥ 1} satisfies the LDP on (S, d0) with rate

function I if the sequence of S-valued random variables {XN , N ≥ 1} satisfies the LDP with

rate function I.

The LDP lower bound in the above definition is equivalent to the following statement [37,

Chapter 3, Section 3]

lim inf
N→∞

1

N
logP (XN ∈ G) ≥ − inf

x∈G
I(x), for all G ⊂ S open.

Similarly, under the compactness of the level sets of the rate function I, the LDP upper bound

above is equivalent to the following statement:

lim sup
N→∞

1

N
logP (XN ∈ F ) ≤ − inf

x∈F
I(x), for all F ⊂ S closed.

To study the LDP for the family of invariant measures, we require estimates on the prob-

abilities of the process-level large deviations of µN
ν . In particular, we consider hitting times of

µN
ν on certain subsets of the state space M1(Z) and apply the process-level large deviation

lower and upper bounds for µN
ν starting at these subsets. Therefore, in addition to the scaling

parameter N , we must consider the process µN
ν indexed by the initial condition ν ∈ MN

1 (Z).

To study the process-level large deviations of such stochastic processes indexed by two param-

eters, we use the following definition of the uniform large deviation principle (see Freidlin and

Wentzell [37, Chapter 3, Section 3]).

Definition 4.2 (Uniform large deviation principle). Let (S, d0) be a metric space. We say that

a family {XN
y , y ∈ S, N ≥ 1} of D([0, T ],S)-valued random variables defined on a probability

space (Ω,F , P ) satisfies the uniform large derivation principle over the class A of subsets of S
with the family of rate functions {Iy, y ∈ S}, Iy : D([0, T ],S) → [0,+∞], y ∈ S, if

• (Compactness of level sets). For eachK ⊂ S compact and s ≥ 0,
⋃

y∈K Φy(s) is a compact

subset of D([0, T ],S), where Φy(s) := {φ ∈ D([0, T ],S) : φ0 = y, Iy(φ) ≤ s};

• (Uniform LDP lower bound). For any γ > 0, δ > 0, s > 0, and A ∈ A, there exists

N0 ≥ 1 such that

P (ρ(XN
y , φ) < δ) ≥ exp{−N(Iy(φ) + γ)},

for all y ∈ A, φ ∈ Φy(s), and N ≥ N0;
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• (Uniform LDP upper bound). For any γ > 0, δ > 0, s0 > 0, and A ∈ A, there exists

N0 ≥ 1 such that

P (ρ(XN
y ,Φy(s)) ≥ δ) ≤ exp{−N(s− γ)},

for all y ∈ A, s ≤ s0, and N ≥ N0.

We now make some definitions. For each ν ∈ M1(Z) and T > 0, define the functional

S[0,T ](·|ν) : D([0, T ],M1(Z)) → [0,∞] by

S[0,T ](φ|ν) :=
∫
[0,T ]

sup
α∈R∞

{
⟨α, φ̇t − Λ∗

φt
φt⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φt)φt(z)

}
dt, (4.5)

whenever φ(0) = ν and the mapping [0, T ] ∋ t 7→ φt ∈ M1(Z) is absolutely continuous;

S[0,T ](φ|ν) = ∞ otherwise. Define the lower level sets of the functional S[0,T ](·|ν) by

Φ[0,T ]
ν (s) := {φ ∈ D([0, T ],M1(Z)) : φ0 = ν, S[0,T ](φ|ν) ≤ s}, s > 0, ν ∈ M1(Z).

The next lemma asserts that these level sets are compact in D([0, T ],M1(Z)) when the initial

conditions belong to a compact subset of M1(Z). The proof is deferred to Appendix 4.A.

Lemma 4.1. For each T > 0, s > 0, and K ⊂ M1(Z) compact,

{φ ∈ D([0, T ],M1(Z)) : φ(0) ∈ K,S[0,T ](φ|φ(0)) ≤ s}

is a compact subset of D([0, T ],M1(Z)).

The starting point of our study of the invariant measure asymptotics is the following uniform

large deviation principle for the family {µN
ν , ν ∈ MN

1 (Z), N ≥ 1} over the class of compact

subsets of M1(Z) with the family of rate functions {S[0,T ](·|ν), ν ∈ M1(Z)}. Its proof follows
from the process-level LDP for µN

ν studied in Léonard [55] for a fixed initial condition and

its extension to the case when initial conditions converge to a point in M1(Z) in Borkar and

Sundaresan [15]. The proof can be found in Appendix 4.A.

Theorem 4.2. Fix T > 0 and assume (E1), (E2), and (E3). Then the family of D([0, T ],M1(Z))-

valued random variables {(µN
ν (t), t ∈ [0, T ]), ν ∈ MN

1 (Z), N ≥ 1} satisfies the uniform large

deviation principle over the class of compact subsets of M1(Z) with the family of rate functions

{S[0,T ](·|ν), ν ∈ M1(Z)}.
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The rate function S[0,T ](·|ν) admits a non-variational representation in terms of a minimal cost

“control” that modulates the transition rates across various edges in E so that the desired

trajectory is obtained.

Theorem 4.3 (Non-variational representation; Léonard [56]). Let φ ∈ D([0, T ],M1(Z)) be

such that S[0,T ](φ|φ(0)) < ∞. Then there exists a measurable function hφ : [0, T ]×E → R such

that

⟨φt, ft⟩ = ⟨φ0, f0⟩+
∫
[0,t]

⟨φu, ∂ufu⟩du

+

∫
[0,t]

∑
(z,z′)∈E

(fu(z
′)− fu(z))(1 + hφ(u, z, z

′))λz,z′(φu)φu(z)du (4.6)

holds for all t ∈ [0, T ] and all f ∈ C1
0([0, T ]×Z), and S[0,T ](φ|φ(0)) admits the non-variational

representation

S[0,T ](φ|φ(0)) =
∫
[0,T ]

∑
(z,z′)∈E

τ ∗(hφ(t, z, z
′))λz,z′(φt)φt(z)dt.

Remark 4.1. It can be shown that the rate function S[0,T ] defined in (4.5) can also be expressed

as

S[0,T ](φ|ν) = sup
f∈C1

0 ([0,T ]×Z)

{
⟨φT , fT ⟩ − ⟨φ0, f0⟩ −

∫
[0,T ]

⟨φu, ∂ufu⟩du

−
∫
[0,T ]

⟨φu, Lφufu⟩du−
∫
[0,T ]

∑
(z,z′)∈E

τ(fu(z
′)− fu(z))λz,z′(φu)φu(z)du

}
, (4.7)

φ ∈ D([0, T ],M1(Z)), see Léonard [56]. This form of the rate function will indeed be used in

the proof of the counterexamples in Section 4.8.

4.3 Invariant measure: Existence, uniqueness, and ex-

ponential tightness

In this section we prove Proposition 4.1, the existence and uniqueness of the invariant measure

℘N for L N for each N ≥ 1, and the exponential tightness of the family of invariant measures

{℘N , N ≥ 1}. The proof relies on the standard Krylov-Bogolyubov argument and a coupling
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between the interacting particle system under consideration and a non-interacting system with

maximal forward transition rates minimal backward transition rates.

We first introduce some notations for the non-interacting particle system. Let L̄ denote

the generator acting on functions f on Z by f 7→
∑

z′:(z,z′)∈E(f(z
′) − f(z))λz,z′ , z ∈ Z, where

λz,z+1 = λ/(z+1) and λz,0 = λ. For each z ∈ Z, let P̄z denote the solution to the D([0, T ],Z)-

valued martingale problem for L̄ with initial condition z. Integration with respect to P̄z is

denoted by Ēz. Let π ∈ M1(Z) denote the unique invariant probability measures for L̄.

Integration with respect to π is denoted by Ēπ. Finally, for each N ≥ 1, let P̄N
ν denote the

solution to the D([0, T ],MN
1 (Z))-valued martingale problem for L N with initial condition

ν, λz,z+1(ζ) replaced by λ/(z + 1) and λz,0(ζ) replaced by λ in (4.1), respectively, for each

ζ ∈ M1(Z). Integration with respect to P̄N
ν is denoted by ĒN

ν . We are now ready to prove

Proposition 4.1.

Proof of Proposition 4.1. Fix N ≥ 1. We first show the existence and uniqueness of the invari-

ant probability measure for L N . Consider the family of probability measures {ηNT , T ≥ 1} on

M1(Z) defined by

ηNT (A) :=
1

T

∫ T

0

PN
δ0
(µN(t) ∈ A)dt, A ∈ B(M1(Z)), T ≥ 1.

Let XN
n (t) denote the state of the nth particle at time t. Note that, for any t > 1, M > 1, and

β > 0,

PN
δ0
(µN(t) /∈ KM) ≤ P̄N

δ0
(µN(t) /∈ KM)

= P̄N
δ0

(
N∑

n=1

ϑ(XN
n (t)) > NM

)

≤ exp{−NMβ}ĒN
δ0

(
exp

{
β

N∑
n=1

ϑ(XN
n (t))

})
= exp{−NMβ}(Ē0(exp{βϑ(XN

1 (t))}))N , (4.8)

where the first inequality follows from a straightforward coupling between the evolution of each

particle under PN
δ0

and P̄N
δ0
, and the second inequality is a consequence of Chebyshev’s inequal-

ity. Note that, again by a coupling argument, Ē0(exp{βϑ(XN
1 (t))}) ≤ Ēπ(exp{βϑ(XN

1 (t))}).
The latter is finite for sufficiently small β > 0, thanks to the exp{−ϑ(z)} decay of the proba-

bility measure π on Z. Thus we can choose β̄ > 0 small enough (independent of M) so that
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log Ēπ(exp{β̄ϑ(XN
1 (t))}) < 1. Hence (4.8) implies that

PN
δ0
(µN(t) /∈ KM) ≤ exp{−N(Mβ̄ − 1)}.

Therefore, for any M > 0 and T ≥ 1, we get

ηNT (∼KM) ≤ exp{−N(Mβ̄ − 1)}. (4.9)

Since KM is a compact subset of M1(Z), this show that the family {ηNT , T ≥ 1} is tight. Hence

it follows that there exists an invariant probability measure ℘N for L N (see, for example, Ethier

and Kurtz [34, Theorem 9.3, page 240]). By Assumption (E1), µN is an irreducible Markov

process; hence ℘N is the unique invariant probability measure for L N .

We now show the exponential tightness of the family {℘N , N ≥ 1}. Let M > 0 be given, and

choose M ′ = (M + 1)/β̄. For each N ≥ 1, since ℘N is a weak limit of the family {ηNT , T ≥ 1}
as T → ∞, from (4.9) with M replaced by M ′, it follows that

℘N(∼KM ′) ≤ lim inf
T→∞

ηNT (∼KM ′) ≤ exp{−NM}. (4.10)

for each N ≥ 1. Hence,

lim sup
N→∞

1

N
log℘N(∼KM ′) ≤ −M,

which establishes that the family {℘N , N ≥ 1} is exponential tight. This completes the proof

of the proposition.

4.4 The LDP lower bound

In this section we prove the LDP lower bound for the family {℘N , N ≥ 1}. To lower bound the

probability of a small neighbourhood of a point ξ under ℘N , we first produce a trajectory that

starts at KM for a suitable M > 0, connects to ξ∗ with a small cost, and then reaches ξ from ξ∗

with cost arbitrarily close to V (ξ). The probability of a small neighbourhood of ξ under ℘N is

then lower bounded by the probability that the process µN remains in a small neighbourhood

of the trajectory constructed above. The latter is then lower bounded using the uniform LDP

lower bound for µN , where the uniformity is over the initial condition lying in a given compact

subset of M1(Z).

We begin with a lemma that allows us to connect points in K(∆) to ξ∗ for small enough ∆
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with small cost. We omit its proof here, since it follows from a certain continuity property of

V which will be shown in Lemma 4.6.

Lemma 4.2. Given γ > 0 there exists ∆ > 0 such that for any ζ ∈ K(∆) there exists a T > 0

and a trajectory φ on [0, T ] such that φ(0) = ζ, φ(T ) = ξ∗, and S[0,T ](φ|ζ) ≤ γ.

We now prove the LDP lower bound for the family {℘N , N ≥ 1}.

Lemma 4.3. For any γ > 0, δ > 0, and ξ ∈ M1(Z), there exists N0 ≥ 1 such that

℘N{ζ ∈ M1(Z) : d(ζ, ξ) < δ} ≥ exp{−N(V (ξ) + γ)} (4.11)

for all N ≥ N0.

Proof. Fix γ > 0, δ > 0, and ξ ∈ M1(Z). We may assume that V (ξ) < ∞; if V (ξ) =

∞ then (4.11) trivially holds for all N ≥ 1. Choose some M > 0 and N1 ≥ 1 such that

℘N(KM) ≥ 1/2 for all N ≥ N1; this is possible from the exponential tightness of the family

{℘N , N ≥ 1}, see Proposition 4.1. Using Lemma 4.2, choose ε > 0 and T0 > 0 such that for

any ζ1 ∈ K(ε) there exists a trajectory φ1 on [0, T0] such that φ1(0) = ζ1, φ1(T0) = ξ∗, and

S[0,T0](φ1|ζ1) ≤ γ/4. Since ξ∗ is the globally asymptotically stable equilibrium for (4.2), for

the above ε > 0, there exists a T1 > 0 such that for any ζ ∈ KM we have µζ(T1) ∈ K(ε),

where µζ denotes the solution to the McKean-Vlasov equation (4.2) with initial condition ζ

(see assumption (F2)). Also, by the definition of V (ξ), there exists a T2 > 0 and a trajectory

φ2 such that φ2(0) = ξ∗, φ2(T2) = ξ, and S[0,T2](φ2|ξ∗) ≤ V (ξ) + γ/4. Let T = T1 + T0 + T2.

Given ζ ∈ KM , we construct a trajectory φζ on [0, T ] by using the above three trajectories as

follows. Let φζ(0) = ζ; φζ(t) = µζ(t) for t ∈ [0, T1]; φζ(t) = φ1(t − T1) for t ∈ (T1, T1 + T0];

and φζ(t) = φ2(t− (T1 + T0)) for t ∈ (T1 + T0, T ]. Note that S[0,T ](φζ |ζ) ≤ V (ξ) + γ/2. From

the uniform continuity of φζ on [0, T ], we can choose δ′ > 0 such that ρ(φ, φζ) < δ′ implies

d(φ(T ), φζ(T )) < δ for any φ ∈ D([0, T ],M1(Z)). Then for each N ≥ N1, we have

℘N{ζ ∈ M1(Z) : d(ζ, ξ) < δ} =

∫
MN

1 (Z)

PN
ζ (d(µ

N(T ), ξ) < δ)℘N(dζ)

≥
∫

KM∩MN
1 (Z)

PN
ζ (d(µ

N(T ), ξ) < δ)℘N(dζ)

≥
∫

KM∩MN
1 (Z)

PN
ζ (ρ(µ

N , φζ) < δ′)℘N(dζ)

≥ 1

2
inf

ζ∈KM∩MN
1 (Z)

PN
ζ (ρ(µ

N , φζ) < δ′); (4.12)
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here the first equality follows since ℘N is invariant to time shifts. By the uniform LDP lower

bound in Theorem 4.2, there exists N2 ≥ N1 such that

PN
ζ (ρ(µ

N , φ) < δ′) ≥ exp{−N(S[0,T ](φ|ζ) + γ/4)}

for all ζ ∈ KM ∩ MN
1 (Z), φ ∈ Φ

[0,T ]
ζ (V (ξ) + γ/2), and N ≥ N2. Noting that S[0,T ](φζ |ζ) ≤

V (ξ) + γ/2 for any ζ ∈ KM ∩MN
1 (Z), and using the above uniform LDP lower bound, (4.12)

becomes

℘N{ζ ∈ M1(Z) : d(ζ, ξ) < δ} ≥ 1

2
exp{−N(V (ξ) + 3γ/4)}

for all N ≥ N2. Finally, choose N0 ≥ N2 so that 1/2 ≥ exp{−Nγ/4}. Then the above becomes

℘N{ζ ∈ M1(Z) : d(ζ, ξ) < δ} ≥ exp{−N(V (ξ) + γ)}

for all N ≥ N0. This completes the proof of LDP lower bound for the family {℘N , N ≥ 1}.

4.5 Properties of the quasipotential

In this section we prove three key properties of the quasipotential V . These three properties

are (i) a characterisation of the set of points for which V is finite, (iii) a certain continuity

property for V , and (iii) the compactness of the lower level sets of V . These properties play an

important role in the proof of the LDP upper bound in Section 4.6.

4.5.1 A characterisation of finiteness of the quasipotential

Recall the function ϑ and the compact sets KM , M > 0. We start with a lemma that enables

us to connect δ0, the point mass at state 0, to a point ξ ∈ KM for some M > 0. This connection

is made using a piecewise constant velocity trajectory wherein for each z ≥ 1, we move the

mass ξ(z) from state 0 to state z in z steps; in the kth step, we move the mass ξ(z) from state

k − 1 to state k with unit velocity. The lemma asserts that the cost of this piecewise constant

velocity trajectory is bounded above by a constant that depends only on M .

Lemma 4.4. Given M > 0 there exists a constant CM depending on M such that for any

ξ ∈ KM there exists a T > 0 and a trajectory φ on [0, T ] such that φ(0) = δ0, φ(T ) = ξ, and

S[0,T ](φ|δ0) ≤ CM .
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Proof. Fix M > 0 and ξ ∈ KM . Fix J ∈ Z \ {0} and define ZJ = {1, 2, . . . , J}, tz = zξ(z) for

z ∈ ZJ , and Tz =
∑

z′∈ZJ ,z′≥z tz′ . Note that TJ ≤ TJ−1 ≤ · · · ≤ T1. We shall first construct

a trajectory φJ such that φJ(0) = δ0, φ
J(T1)(z) = ξ(z) for each z ∈ ZJ , and S[0,T1](φ

J |δ0)
bounded above by a constant independent of J .

Let TJ+1 = 0. For each z ∈ ZJ , starting with z = J , we move the mass ξ(z) from the state

0 to state z using a piecewise unit velocity trajectory over the time duration (Tz+1, Tz+1 + tz].

We define this trajectory φJ on [0, T1] as follows. Let φ
J
0 = δ0. For each z ∈ ZJ and 1 ≤ k ≤ z,

when t ∈ (Tz+1 + (k − 1)ξ(z), Tz+1 + kξ(z)], let

φ̇J
t (l) =


1 if l = k

−1 if l = k − 1

0 otherwise,

l ∈ Z, and define φJ
t (l) = δ0(l) +

∫
[0,t]

φ̇J
u(l)du, l ∈ Z, t ∈ [0, T ].

We now calculate the cost of this trajectory. For a fixed z ∈ Z and 1 ≤ k ≤ z, for each

t ∈ (Tz+1 + (k − 1)ξ(z), Tz+1 + kξ(z)] and α ∈ R∞, note that

⟨α, φ̇J
t − Λ∗

φJ
t
φJ
t ⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φ
J
t )φ

J
t (z)

= (α(k)− α(k − 1))−
∑

(z,z′)∈E

(exp{α(z′)− α(z)} − 1)λz,z′(φ
J
t )φ

J
t (z).

Hence,

sup
α∈R∞

{
⟨α, φ̇J

t − Λ∗
φJ
t
φJ
t ⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φ
J
t )φ

J
t (z)

}
≤ sup

x∈R
(x− (exp{x} − 1)λk−1,k(φ

J
t )φ

J
t (k − 1))

+ sup
α∈R∞

−
∑

(z,z′)∈E;(z,z′) ̸=(k−1,k)

(exp{α(z′)− α(z)} − 1)λz,z′(φ
J
t )φ

J
t (z)


≤ log

(
1

φJ
t (k − 1)λk−1,k(φJ

t )

)
+ 2λ

≤ log

(
1

φJ
t (k − 1)

)
+ log k + log

(
1

λ

)
+ 2λ, (4.13)

where the last two inequalities follow from assumption (E2). Consider the first term above. For

k > 1, integration of this quantity over the time duration t ∈ (Tz+1 + (k− 1)ξ(z), Tz+1 + kξ(z)]
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gives ∫
(Tz+1+(k−1)ξ(z),Tz+1+kξ(z)]

log

(
1

φJ
t (k − 1)

)
dt = −

∫ 0

ξ(z)

log

(
1

u

)
du

= (u log u− u)

∣∣∣∣0
ξ(z)

= ξ(z) log

(
1

ξ(z)

)
+ ξ(z),

where the first equality follows from the variable change u = φJ
t (k − 1) and the facts (i)

φ̇J
t (k− 1) = −1, (ii) φJ

t (k− 1) = ξ(z) when t = Tz+1+(k− 1)ξ(z), (iii) φJ
t (k− 1) = 0 when t =

Tz+1+kξ(z), and (iv) du = −dt. For k = 1, using the bound φJ
t (0) ≥ φJ

t (0)− (1−
∑

z′≥z ξ(z
′)),

we get ∫
(Tz+1,Tz+1+ξ(z)]

log

(
1

φJ
t (0)

)
dt

≤
∫
t∈(Tz+1,Tz+1+ξ(z)]

log

(
1

φJ
t (0)− (1−

∑
z′≥z ξ(z

′))

)
dt

= −
∫ 0

ξ(z)

log

(
1

u

)
du,

where the last equality follows from the variable change u = φJ
t (0) − (1 −

∑
z′≥z ξ(z

′)), and

the facts (i) φJ
t (0) = −1, (ii) φJ

t (0) = 1 −
∑

z′>z ξ(z
′) when t = Tz+1 so that φJ

t (0) − (1 −∑
z′≥z ξ(z

′)) = ξ(z) when t = Tz+1, (iii) φ
J
t (0) = 1 −

∑
z′≥z ξ(z

′) when t = Tz+1 + ξ(z) so that

φJ
t (0) − (1 −

∑
z′≥z ξ(z

′)) = 0 when t = Tz+1 + ξ(z), and (iv) du = −dt. Thus, proceeding as

before for the case k > 1, we arrive at∫
(Tz+1,Tz+1+ξ(z)]

log

(
1

φJ
t (0)

)
dt ≤ ξ(z) log

(
1

ξ(z)

)
+ ξ(z).

Hence, integrating (4.13) over t ∈ (Tz+1+(k−1)ξ(z), Tz+1+kξ(z)] and summing over 1 ≤ k ≤ z,

we get, for each z ∈ ZJ ,∫
(Tz+1,Tz+1+tz ]

sup
α∈R∞

{
⟨α, φ̇J

t − Λ∗
φJ
t
φJ
t ⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φ
J
t )φ

J
t (z)

}
dt

≤ zξ(z) log

(
1

ξ(z)

)
+ C̃z
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where C̃z = (z log z+ z)ξ(z) + zξ(z)
(
log
(

1
λ

)
+ 2λ

)
. Let C̃J =

∑
z∈ZJ

C̃z. Thus, summing the

above display over z ∈ ZJ , we arrive at

S[0,T1](φ
J |δ0) ≤

∑
z∈ZJ

zξ(z) log

(
1

ξ(z)

)
+ C̃J .

Note that∑
z∈ZJ

zξ(z) log

(
1

ξ(z)

)
=

∑
z∈ZJ :

ξ(z)≤1/z3

zξ(z) log

(
1

ξ(z)

)
+

∑
z∈ZJ :

ξ(z)>1/z3

zξ(z) log

(
1

ξ(z)

)

≤ 1

e
+

∑
z∈ZJ\{1}:
ξ(z)≤1/z3

3 log z

z2
+ 3

∑
z∈ZJ :

ξ(z)>1/z3

z log zξ(z)

≤ 1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ z log zξ(z)

}
, (4.14)

where the first inequality comes from the fact that the mapping x 7→ x log(1/x) is monotonically

increasing for x ∈ [0, 1/e]. Hence,

S[0,T1](φ
J |δ0) ≤

1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ z log zξ(z)

}
+ C̃J , J ≥ 1.

Define T =
∑

z∈Z zξ(z). We now extend the trajectory φJ to (T1, T ] by defining φJ
t = φJ

T1

for t ∈ (T1, T ]. Noting that φ̇J
t (z) = 0 for all z ∈ Z on t ∈ (T1, T ], this extension suffers an

additional cost of at most 2λT . Hence, we get

S[0,T ](φ
J |δ0) ≤

1

e
+ 3

∑
z∈ZJ

{
log z

z2
+ z log zξ(z)

}
+ C̃J + 2λT.

Noting that (i) the right hand side above is upper bounded by ⟨ξ, ϑ⟩C(λ, λ), where C(λ, λ) is

a constant depending on λ and λ, and (ii) ⟨ξ, ϑ⟩ ≤ M , the above display yields

S[0,T ](φ
J |δ0) ≤ C(M,λ, λ),

where C(M,λ, λ) is a constant depending on M,λ, and λ. Using the compactness of the level

sets of S[0,T ] (see Lemma 4.1), it follows that the sequence of trajectories {φJ , J ≥ 1} has a

convergent subsequence. Re-indexing the original sequence, let φJ → φ in D([0, T ],M1(Z)) as

J → ∞. By construction, for each J ∈ Z \{0}, φJ
T (z) = ξ(z) for all z ∈ ZJ ; hence φT (z) = ξ(z)
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for all z ∈ Z. By the lower semicontinuity of S[0,T ], it follows that

S[0,T ](φ|δ0) ≤ lim inf
J→∞

S[0,T ](φ
J |δ0) ≤ C(M,λ, λ).

This completes the proof of the lemma.

We are now ready to characterise the set of points ξ in M1(Z) whose V (ξ) is finite.

Lemma 4.5. V (ξ) < ∞ if and only if ξ ∈ K . Furthermore, for any M > 0, there exists a

constant CM > 0 such that ξ ∈ KM implies V (ξ) ≤ CM .

Proof. Let ξ ∈ M1(Z) be such that V (ξ) < ∞. Then there exists a T > 0 and a trajectory φ

on [0, T ] such that φ(0) = ξ∗, φ(T ) = ξ, and S[0,T ](φ|ξ∗) ≤ V (ξ) + 1. By Theorem 4.3, there

exists a measurable function hφ on [0, T ]× E such that

⟨φt, f⟩ = ⟨φ0, f⟩+
∫
[0,t]

∑
(z,z′)∈E

(f(z′)− f(z))(1 + hφ(u, z, z
′))λz,z′(φu)φu(z)du (4.15)

holds for all t ∈ [0, T ] and f ∈ C0(Z), and S[0,T ](φ|φ(0)) is given by

S[0,T ](φ|φ(0)) =
∫
[0,T ]

∑
(z,z′)∈E

τ ∗(hφ(t, z, z
′))λz,z′(φt)φt(z)dt.

For any x ≥ 0 and y ∈ R, using the convex duality relation (x − 1)y ≤ τ ∗(x − 1) + τ(y),

we get the inequality xy ≤ τ ∗(x − 1) + (exp{y} − 1). Hence, from the above non-variational

representation for S[0,T ](φ|φ(0)), (4.15) implies

⟨φt, f⟩ ≤ ⟨ξ∗, f⟩+
∫
[0,t]

∑
(z,z′)∈E

τ ∗(hφ(u, z, z
′))λz,z′(φu)φu(z)du

+

∫
[0,t]

∑
(z,z′)∈E

(exp{f(z′)− f(z)} − 1)λz,z′(φu)φu(z)du

≤ ⟨ξ∗, f⟩+ V (ξ) + 1

+

∫
[0,t]

∑
(z,z′)∈E

(exp{f(z′)− f(z)} − 1)λz,z′(φu)φu(z)du. (4.16)
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Recall the function ϑ on Z. For n ≥ 1, define

ϑn(z) =

{
ϑ(z), if z ≤ n,

0, otherwise.

By convexity, note that ϑn(z+1)−ϑn(z) ≤ 1+log(z+1) and ϑn(0)−ϑn(z) ≤ 0, for each z ∈ Z.

Therefore, using the upper bound for the transition rates from assumption (E2), observe that∫
[0,t]

∑
(z,z′)∈E

(exp{ϑn(z
′)− ϑn(z)} − 1)λz,z′(φu)φu(z)du ≤ λ(e− 1)t,

for each t ∈ [0, T ] and n ≥ 1. It follows from (4.16) with f replaced by ϑn that

⟨φt, ϑn⟩ ≤ ⟨ξ∗, ϑn⟩+ V (ξ) + 1 + λ(e− 1)T

for each t ∈ [0, T ] and n ≥ 1. Letting n → ∞ and using monotone convergence, we conclude

that

sup
t∈[0,T ]

⟨φt, ϑ⟩ = sup
t∈[0,T ]

lim
n→∞

⟨φt, ϑn⟩ ≤ ⟨ξ∗, ϑ⟩+ V (ξ) + 1 + λ(e− 1)T. (4.17)

In particular, ⟨ξ, ϑ⟩ ≤ ⟨ξ∗, ϑ⟩+ V (ξ) + 1 + λ(e− 1)T . It follows that ξ ∈ K .

Conversely, let ξ ∈ K . LetM > 0 be such that ξ ∈ KM . By Lemma 4.4, there exists a T > 0

and a trajectory φ(2) on [0, T ] such that φ(2)(0) = δ0, φ
(2)(T ) = ξ, and S[0,T ](φ

(2)|δ0) ≤ CM

for some constant CM > 0 depending on M . Let t0 = 0, tz =
∑z

z′=1 ξ(z
′), z ∈ Z \ {0},

and T1 =
∑

z′ ̸=0 ξ(z
′). We construct another trajectory φ(1) on [0, T1] such that φ(1)(0) = ξ∗,

φ(1)(T1) = δ0, and S[0,T1](φ
(1)|ξ∗) < ∞ as follows. When t ∈ (tz−1, tz] for some z ∈ Z \ {0}, let

φ̇
(1)
t (l) =


−1, if l = z,

1, if l = 0,

0, otherwise,

l ∈ Z, and define φ
(1)
t (t) = φ

(1)
0 (l) +

∫
[0,t]

φ̇
(1)
u (l)du, l ∈ Z, t ∈ [0, T1]. Note that, for each

α ∈ R∞, when t ∈ (tz−1, tz] for some z ∈ Z \ {0}, we have{
⟨α,φ̇(1)

t − Λ∗
φ
(1)
t

φ
(1)
t ⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φ
(1)
t )φ

(1)
t (z)

}
= (α(0)− α(z))− (exp{α(0)− α(z)} − 1)λz,0(φ

(1)
t )φ

(1)
t (z)
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−
∑

(z0,z′)∈E:(z0,z′ )̸=(z,0)

(exp{α(z′)− α(z0)} − 1)λz0,z′(φ
(1)
t )φ

(1)
t (z0)

}
,

so that optimising the left hand side of the above display over α ∈ R∞ yields

sup
α∈R∞

{
⟨α,φ̇(1)

t − Λ∗
φ
(1)
t

φ
(1)
t ⟩ −

∑
(z,z′)∈E

τ(α(z′)− α(z))λz,z′(φ
(1)
t )φ

(1)
t (z)

}

≤ log

(
1

φ
(1)
t (z)λz,0(φ

(1)
t )

)
+ 2λ̄

≤ log

(
1

φ
(1)
t (z)

)
+ log

(
1

λ

)
+ 2λ,

where the last inequality follows form the lower bound on the backward transition rates in

assumption (E2). Integrating the above over (tz−1, tz] and summing over z ∈ Z \{0}, we arrive
at

S[0,T1](φ
(1)|ξ) ≤

∑
z∈Z\{0}

{
ξ∗(z) log

1

ξ∗(z)
+ ξ∗(z)

(
log

(
1

λ

)
+ 2λ

)}
.

Since ξ∗ ∈ K , proceeding via the steps in (4.14), we conclude that the right hand side of the

above display is finite. We combine φ(1) and φ(2) and define a new trajectory φ̃ on [0, T1 + T ]

as follows: φ̃(t) = φ(1)(t) on t ∈ [0, T1]; φ̃(t) = φ(2)(t − T1) on t ∈ (T1, T1 + T ]. Note that

φ̃(0) = ξ∗, φ̃(T1 + T ) = ξ, and S[0,T1+T ](φ̃|ξ∗) < ∞. Hence V (ξ) < ∞.

To prove the second statement, we note that given any M > 0, for any ξ ∈ KM , the cost

of the trajectory φ̃ constructed in the previous paragraph is bounded above by a constant

depending only on M (and not on ξ). This completes the proof of the lemma.

4.5.2 Continuity

We now establish a certain continuity property of the quasipotential V . Since V has compact

level sets and the space M1(Z) is not locally compact, we cannot expect V to be continuous

on M1(Z). In fact, for any point ξ ∈ M1(Z) with V (ξ) < ∞, one can produce a sequence

{ξn, n ≥ 1} such that ξn → ξ in M1(Z) as n → ∞, and ⟨ξn, ϑ⟩ = ∞ for all n ≥ 1, so that

infn≥1 V (ξn) = ∞. We prove that V is continuous under the convergence of ϑ-moments when it

is restricted to K . That is, when ξn, ξ ∈ K , ξn → ξ in M1(Z), and ⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞,

then V (ξn) → V (ξ) as n → ∞. Towards this, we produce a trajectory that connects ξ to ξn

by first moving the mass from all the large enough states z back to the state 0, then producing
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a constant velocity trajectory that fills the required mass from state 0 to all the large enough

states z, and finally adjusting mass within a finite subset of Z to reach ξn. We show that the

cost of the trajectory constructed above can be made arbitrarily small for large enough n.

Lemma 4.6. Let ξn ∈ K , n ≥ 1, and ξ ∈ K . Suppose that ξn → ξ in M1(Z) and ⟨ξn, ϑ⟩ →
⟨ξ, ϑ⟩ as n → ∞. Then V (ξn) → V (ξ) as n → ∞.

Proof. We first prove that lim supn→∞ V (ξn) ≤ V (ξ). Fix ε > 0. Let z0 ∈ Z be such that∑
z>z0

ϑ(z)ξ(z) < ε/6. Then choose n1 ≥ 1 such that
∑

z>z0
ϑ(z)ξn(z) < ε/3 holds for all

n ≥ n1; this is possible since ξn → ξ in M1(Z) and ⟨ξn, ϑ⟩ → ⟨ξ, ϑ⟩ as n → ∞. Let tz0 = 0,

tz =
∑z

z′=z0+1 ξ(z
′), z > z0, and T0 =

∑
z′>z0

ξ(z′). Define the trajectory φ(0) on [0, T0] as

follows. When t ∈ (tz−1, tz] for some z > z0, let

φ̇
(0)
t (l) =


−1, if l = z,

1, if l = 0,

0, otherwise,

l ∈ Z, and define φ
(0)
t (l) = ξ(l) +

∫
[0,t]

φ̇
(0)
u (l)du, l ∈ Z, t ∈ [0, T1]. Note that φ

(0)
T0
(z) = ξ(z) for

1 ≤ z ≤ z0, φ
(0)
T0
(z) = 0 for z > z0, and φ

(0)
T0
(0) = ξ(0)+

∑
z>z0

ξ(z). Let M = (supn≥n1
⟨ξn, ϑ⟩)∨

⟨ξ, ϑ⟩+ 1. Using ideas similar to those used in the proof of Lemma 4.5, it can be checked that

S[0,T0](φ
(0)|ξ) ≤ C0(M,λ, λ)ε, for some constant C1(M,λ, λ) depending on M , λ, and λ.

Let εn =
∑

z>z0
ξn(z). If εn > φ

(0)
T0
(0), then we move the extra mass εn − φ

(0)
T0
(0) from

the states {1, 2, . . . , z0} to state 0 as follows. Let T1 = T0 + εn − φ
(0)
T0
(0). When t is between

T0 +
∑z0

z′=z+1 φ
(0)
T0
(z′) and (T0 +

∑z0
z′=z φ

(0)
T0
(z′)) ∧ T1 for some z ≤ z0, let

φ̇
(1)
t (l) =


−1, if l = z,

1, if l = 0,

0, otherwise,

l ∈ Z. Define the trajectory φ(1) on [0, T1] as follows: φ
(1)
t = φ

(0)
t when t ∈ [0, T0]; φ

(1)
t (l) =

φ
(0)
T0
(l)+

∫
[0,t]

φ̇
(1)
u (l)du, l ∈ Z, t ∈ (T0, T1]. Note that φ

(1) depends on n, but we suppress this in

the notation for ease of readability. Again, since εn is smaller than ε/3, by using calculations

similar to those used in the proof of Lemma 4.5, we see that S[T0,T1](φ
(1)|φ(0)

T0
) ≤ C1(M,λ, λ)ε

for some constant C1(M,λ, λ) depending on M , λ, and λ. On the other hand, if εn ≤ φ
(0)
T0
(0),

we set T1 = T0 and φ
(1)
t = φ

(0)
t on [0, T1]. In both cases, we have φ

(1)
T1
(0) ≥ εn.

Let T2 = (z0 + 1)εn. We now construct another trajectory φ(2) on [0, T2] to transfer the

mass εn from state 0 (in φ
(1)
T1
) to state z0 + 1. Let φ

(2)
0 = φ

(1)
T1
. When t ∈ ((z − 1)εn, zεn] for
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some z ∈ {1, 2, . . . , z0 + 1}, let

φ̇
(2)
t (l) =


−1, if l = z − 1,

1, if l = z,

0, otherwise,

l ∈ Z, and define φ
(2)
t (l) = φ

(1)
T1
(l) +

∫
[0,t]

φ̇
(2)
u (l)du, l ∈ Z, t ∈ (0, T2]. Note that |x log( 1

x
) −

y log( 1
y
)| ≤ δ + δ log(1/δ) whenever |x − y| ≤ δ, and that εn ≤ ε/(z0 log z0). Hence, using

calculations similar to those done in the proof of Lemma 4.4, we see that S[0,T2](φ
(2)|φ(1)

T1
) can

be bounded above by C2(M,λ, λ)ε log(1/ε) where C2(M,λ, λ) is a constant depending on M ,

λ, and λ, for each n ≥ n1 (recall that φ(2) depends on n).

Note that φ
(2)
T2
(z0 + 1) = εn. We now construct a trajectory that distributes this mass εn

from the state z0 + 1 to all the states z ≥ z0 + 1 to match with ξn(z). Let t′z = zξn(z) for

z ≥ z0 + 2 and T3 =
∑

z≥z0+2 t
′
z. Similar to the construction in the proof of Lemma 4.4, we

can now construct a trajectory φ(3) on [0, T3] such that φ
(3)
0 = φ

(2)
T2
, φ

(3)
T3
(z) = ξn(z) for each

z ≥ z0 + 1, and S[0,T3](φ
(3)|φ(2)

T2
) ≤ C3(M,λ, λ)ε for some constant C3(M,λ, λ) depending on

M , λ, and λ, for all n ≥ n1.

Finally, we construct a trajectory that connects φ
(3)
T3

to ξn by adjusting the mass within the

states {0, 1, . . . , z0}. Note that φ
(3)
T3
(z) = ξn(z) for each z ≥ z0 + 1. Let Z0 ⊂ {1, 2, . . . , z0}

denote the set of all z ∈ {1, 2, . . . , z0} such that φ
(3)
T3
(z) > ξn(z). Similar to the construction

of φ(1), for each z ∈ Z0, we move the mass φ
(3)
T3
(z) − ξn(z) from state z to state 0 using unit

velocity over a time duration φ
(3)
T3
(z) − ξn(z). Once these mass transfers are complete, similar

to the construction of φ(2), for each z /∈ Z0, we move the mass ξn(z)−φ
(3)
T3
(z) using a piecewise

constant velocity trajectory from state 0 to state z over the time duration z(ξn(z) − φ
(3)
T3
(z)).

Let T4 =
∑

z∈Z0
(φ

(3)
T3
(z)−ξn(z))+

∑
z /∈Z0,z≤z0

z(ξn(z)−φ
(3)
T3
(z)). Let ε̃n = maxz∈{1,2,...,z0} |ξn(z)−

φ
(3)
T3
(z)|. Then using arguments similar to those used in the proof of Lemma 4.4, we see that

S[0,T4](φ
(4)|φ(3)

T3
) ≤ C4(M,λ, λ)ε̃n log(1/ε̃n) for some constant C4(M,λ, λ) depending on M , λ,

and λ, for all n ≥ n1. Since ε̃n → 0 as n → ∞, we can choose n2 ≥ n1 such that ε̃n log(1/ε̃n) ≤
ε log(1/ε) for all n ≥ n2. Therefore S[0,T4](φ

(4)|φ(3)
T3
) ≤ C4(M,λ, λ)ε log(1/ε) for all n ≥ n2.

Let T =
∑4

i=1 Ti. We now append the four paths φ(i), 1 ≤ i ≤ 4, constructed in the

previous paragraphs over the time duration [0, T ] to get a path φ such that φ0 = ξ, φT = ξn

and S[0,T ](φ|ξ) ≤ C(M,λ, λ)ε log(1/ε) where C(M,λ, λ) is a constant depending on M , λ and

λ. Hence, for each n ≥ n2, we have

V (ξn) ≤ V (ξ) + S[0,T4](φ|ξ) ≤ V (ξ) + C(M,λ, λ)ε log(1/ε).
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Therefore, lim supn→∞ V (ξn) ≤ V (ξ) + C(M,λ, λ)ε log(1/ε). Letting ε → 0 and noting that

ε log(1/ε) → 0, we arrive at lim supn→∞ V (ξn) ≤ V (ξ).

To prove lim infn→∞ V (ξn) ≥ V (ξ), we reverse the role of ξn and ξ in the above argument.

That is, we construct a trajectory φ on [0, T ] such that φ0 = ξn, φT = ξ, and S[0,T ](φ|ξn) ≤ εn

for all n ≥ 1, where εn → 0 as n → ∞. Thus, we get

V (ξ) ≤ V (ξn) + εn.

Letting n → ∞, we conclude that lim infn→∞ V (ξn) ≥ V (ξ). This completes the proof of the

lemma.

Remark 4.2. The choice of n1 in the above proof suggests that the inequality lim supn→∞ V (ξn) ≤
V (ξ) can be proved as long as ξn → ξ in M1(Z) as n → ∞ and lim supn→∞⟨ξn, ϑ⟩ ≤ ⟨ξ, ϑ⟩
holds. Similarly, the inequality lim infn→∞ V (ξn) ≥ V (ξ) can be proved as long as ξn → ξ in

M1(Z) and lim infn→∞⟨ξn, ϑ⟩ ≥ ⟨ξ, ϑ⟩ holds. This observation will be later used in the proof

of the compactness of the lower level sets of V .

4.5.3 Compactness of the lower level sets of the quasipotential

Define the level sets of V by

Ξ(s) := {ξ ∈ M1(Z) : V (ξ) ≤ s}, s > 0.

In this section we establish the compactness of Ξ(s) for each s > 0.

Lemma 4.7. For each s > 0, Ξ(s) is a compact subset of M1(Z).

Proof. We first prove an inclusion property of the level sets of V , namely, given M > 0 there

exists M ′ > 0 such that

{ξ ∈ M1(Z) : V (ξ) ≤ M} ⊂ KM ′ . (4.18)

On one hand, using Proposition 4.1 on the exponential tightness of the family {℘N , N ≥ 1},
choose M ′ > 0 (see (4.10)) such that

lim sup
N→∞

1

N
log℘N(∼KM ′) ≤ −(M + 1).
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On the other hand, using the LDP lower bound established in Lemma 4.3 and the compactness

of KM ′ , we have

lim inf
N→∞

1

N
log℘N(∼KM ′) ≥ − inf

ξ /∈KM′
V (ξ).

Combining the above two displays, we get

− inf
ξ /∈KM′

V (ξ) ≤ lim inf
N→∞

1

N
log℘N(∼KM ′) ≤ lim sup

N→∞

1

N
log℘N(∼KM ′) ≤ −(M + 1).

That is, ξ /∈ KM ′ implies V (ξ) ≥ M +1 > M . This shows (4.18). By Prohorov’s theorem, KM

is a compact subset of M1(Z); hence (4.18) shows that Ξ(s) is precompact for each s > 0.

We now show that Ξ(s) is closed in M1(Z). Let ξn ∈ Ξ(s) for each n ≥ 1 and let ξn → ξ

in M1(Z) as n → ∞. By Fatou’s lemma, we have lim infn→∞⟨ξn, ϑ⟩ ≥ ⟨ξ, ϑ⟩. Hence, by

Remark 4.2, we have lim infn→∞ V (ξn) ≥ V (ξ). Thus, ξ ∈ Ξ(s). This completes the proof of

the lemma.

4.6 The LDP upper bound

For m ∈ N, define

Sm(∆,M) = {φ ∈ D([0,m],M1(Z)) : φ(0) ∈ KM , φ(n) /∈ K(∆) for all n = 1, 2, . . . ,m}.

That is, Sm(∆,M) denotes the set of all trajectories that start at KM and do not intersect

K(∆) at all integer time points in [0,m]. We begin with a lemma that asserts that the elements

of Sm(∆,M) for large enough m must have non-trivial cost. The key idea used in the proof

comes from the compactness of level sets of the process-level large deviations rate function

S[0,T ](·|ν), ν ∈ K, for any compact subset K of M1(Z) (see Lemma 4.1).

Lemma 4.8. For any s > 0, M > 0, and ∆ > 0, there exists m0 ∈ N such that

inf{S[0,m0](φ|φ(0)), φ ∈ Sm0(∆,M)} > s. (4.19)

Proof. Suppose not. Then there exist s > 0, M > 0, ∆ > 0, a sequence of positive numbers

{εm,m ≥ 1} such that εm → 0 as m → ∞, and a sequence of trajectories {φm,m ≥ 1} such

that φm ∈ Sm(∆,M), and S[0,m](φm|φm(0)) ≤ s+ εm for each m ≥ 1.

Note that there exists an M1 > 0 such that φm(t) ∈ KM1 for each t ∈ [0,m] and each m ≥ 1.
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Indeed, by Lemma 4.5, there exists CM > 0 such that ζ ∈ K(∆) implies V (ζ) ≤ CM . Thus, for

eachm ≥ 1, there exist a T̄m > 0 and a trajectory φ̄m on [0, T̄m] such that φ̄m(0) = ξ∗, φ̄m(T̄m) =

ζ ∈ K(∆), and S[0,T̄m](φ̄m|ξ∗) ≤ CM + 1. We extend this trajectory φ̄m to (T̄m, T̄m + m] by

defining φ̄m(t) = φm(t− T̄m) on t ∈ (T̄m, T̄ +m]. Note that S[0,T̄m+m](φ̄m|ξ∗) ≤ CM +1+s+εm,

so that V (φm(t)) ≤ CM + 1+ s+ εm for each t ∈ [0,m] and each m ≥ 1. Thus, we can find an

M1 > 0 such that (4.18) holds with M replaced by CM + s + supm≥1 εm + 2 and M ′ replaced

by M1. It follows that φm(t) ∈ KM1 for each t ∈ [0,m] and each m ≥ 1.

For the above choice of M1, using assumption (F2), choose T1 > 1 such that µζ(t) ∈ K(∆/2)

for each t ≥ T1 and each ζ ∈ KM1 , where µζ is the solution to the McKean-Vlasov equation (4.2)

with initial condition ζ. Note that the closure of the set of all trajectories φ on [0, T1] in

D([0, T1],M1(Z)) with initial condition φ(0) ∈ KM1 and φ(T1) /∈ K(∆) does not contain any

trajectory of the McKean-Vlasov equation (4.2). It follows from Lemma 4.1 that

β := inf{S[0,T1](φ|φ(0)), φ(0) ∈ KM1 , φ(n) /∈ K(∆) for each n = 1, 2, . . . , ⌊T1⌋} > 0.

Therefore, noting that φm(t) ∈ KM1 for each t ∈ [0,m] and m ≥ 1, we see that

S[0,m](φm|φm(0)) ≥
⌊m/T1⌋∑
n=1

S[(n−1)T1,nT1](φm|φm((n− 1)T ))

≥
⌊
m

T1

⌋
β

→ ∞ as m → ∞,

which contradicts our assumption. This completes the proof of the lemma.

With a slight abuse of notation, given A ⊂ M1(Z), s > 0, and T > 0, define

Φ
[0,T ]
A (s) := {φ ∈ D([0, T ],M1(Z)) : φ(0) ∈ A, S[0,T ](φ|φ(0)) ≤ s}.

We now prove a certain containment property for elements of M1(Z) that can arise as end-

points of trajectories in Φ
[0,T ]
K(∆)(s), s > 0 and ∆ > 0, i.e., points ξ ∈ M1(Z) such that there

exists a trajectory φ with φ0 ∈ K(∆) and S[0,T ](φ|φ0) ≤ s. We prove that such points are not

far from the lower level sets of V in M1(Z). This connection between trajectories over finite

time horizons and the level sets of the quasipotential V is the key to transfer the process-level

LDP upper bound in Theorem 4.2 to the LDP upper bound for the family of invariant measures

{℘N , N ≥ 1}.

140



Lemma 4.9. For any s > 0 and δ > 0 there exists ∆ > 0 and T1 ≥ 1 such that for all T ≥ T1,

{φ(T ) : φ ∈ Φ
[0,T ]
K(∆)(s)} ⊂ {ξ ∈ M1(Z) : d(ξ,Ξ(s)) ≤ δ}. (4.20)

Proof. Suppose not. Then there exist s > 0, δ > 0, sequences {∆n, n ≥ 1}, {Tn, n ≥ 1} such

that ∆n ↓ 0 and Tn ↑ ∞ as n → ∞, and trajectories φn ∈ Φ
[0,Tn]
K(∆n)

(s) such that d(φn(Tn),Ξ(s)) >

δ for each n ≥ 1. Let ξn = φn(Tn), n ≥ 1. By Lemma 4.6, there exists a T ′ > 0 and a sequence

{εn, n ≥ 1}, with εn → 0 as n → ∞, such that for any ζ ′ ∈ K(∆n) there exists a trajectory

φ̄ζ′ on [0, T ′] such that φ̄ζ′(0) = ξ∗, φ̄ζ′(T ′) = ζ ′, and S[0,T ′](φ̄
ζ′ |ξ∗) ≤ εn. For each n ≥ 1, let

φ̃n be the trajectory on [0, T ′ + Tn] defined as follows. Let φ̃n(0) = ξ∗; φ̃n(t) = φ̄φn(0)(t) on

t ∈ [0, T ′]; φ̃n(t) = φn(t − T ′) on t ∈ (T ′, T ′ + Tn]. In particular, φ̃n(T
′ + Tn) = ξn. Clearly,

S[0,T ′+Tn](φ̃n|ξ∗) ≤ s + εn. It follows that V (ξn) ≤ s + εn. Using the compactness of the lower

level sets of V (see Lemma 4.7), we can find a convergent subsequence of {ξn, n ≥ 1}; after
re-indexing and denoting this convergent subsequence by {ξn, n ≥ 1}, let ξn → ξ in M1(Z) as

n → ∞. By assumption, d(ξn,Ξ(s)) > δ for each n ≥ 1, and hence d(ξ,Ξ(s)) ≥ δ. Using the

lower semicontinuity of V , we see that

V (ξ) ≤ lim inf
n→∞

V (ξn) ≤ lim inf
n→∞

(s+ εn) = s.

Hence ξ ∈ Ξ(s). This contradicts d(ξ,Ξ(s)) ≥ δ, which is a consequence of our assumption.

This proves the lemma.

We are now ready to prove the LDP upper bound for the family {℘N , N ≥ 1}. The

proof relies on the uniform LDP upper bound in Theorem 4.2, the exponential tightness of the

family {℘N , N ≥ 1}, the containment property established in Lemma 4.9, an estimate on the

probability that µN lies in Sm(M,∆) (which uses the process-level uniform LDP upper bound

in Theorem 4.2 and the result of Lemma 4.8), and finally the strong Markov property of µN .

Lemma 4.10. For any γ > 0, δ > 0, and s > 0, there exists N0 ≥ 1 such that

℘N{ζ ∈ M1(Z) : d(ζ,Ξ(s)) ≥ δ} ≤ exp{−N(s− γ)}

for all N ≥ N0.

Proof. Fix γ > 0, δ > 0, and s > 0. Choose M > 0 and N1 ≥ 1 such that ℘N(∼KM) ≤
exp{−Ns} for allN ≥ N1; this is possible from the exponential tightness of the family {℘N , N ≥
1}, see Proposition 4.1. For the given s > 0 and δ > 0, from Lemma 4.9, choose ∆ > 0 and

T1 > 0 such that (4.20) holds for all T ≥ T1. For the above choice of ∆ > 0 and M > 0, by
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Lemma 4.8, choose m0 ∈ N such that such that (4.19) holds. By (4.19) and the compactness

of Φ
[0,m0]
KM

in D([0,m0],M1(Z)), the closure of Sm0(∆,M) does not intersect Φ
[0,m0]
KM

. It follows

that there exists a δ0 > 0 such that φ ∈ Sm0(∆,M) implies ρ(φ,Φ
[0,m0]
KM

(s)) ≥ δ0. Hence by the

uniform LDP upper bound in Theorem 4.2, there exists N2 ≥ N1 such that

PN
ζ (µ

N ∈ Sm0(∆,M)) ≤ PN
ζ (ρ(µ

N ,Φ
[0,m0]
KM

) ≥ δ0)

≤ exp{−N(s− γ/2)} (4.21)

for all ζ ∈ KM ∩MN
1 (Z) and N ≥ N2. Thus, with T = m0 + T1 and N ≥ N2, we have

℘N{ζ ∈ M1(Z) : d(ζ,Ξ(s)) ≥ δ}

=

∫
MN

1 (Z)

PN
ζ (d(µ

N(T ),Ξ(s)) ≥ δ)℘N(dζ)

≤ exp{−Ns}+
∫

KM∩MN
1 (Z)

PN
ζ (d(µ

N(T ),Ξ(s)) ≥ δ)℘N(dζ)

≤ exp{−Ns}+ sup
ζ∈KM∩MN

1 (Z)

PN
ζ (µ

N ∈ Sm0(∆,M))

+

∫
KM∩MN

1 (Z)

PN
ζ (µ

N /∈ Sm0(∆,M), d(µN(T ),Ξ(s)) ≥ δ)℘N(dζ)

≤ exp{−Ns}+ exp{−N(s− γ/2)}

+

∫
KM∩MN

1 (Z)

PN
ζ (µ

N /∈ Sm0(∆,M), d(µN(T ),Ξ(s)) ≥ δ)℘N(dζ); (4.22)

here the first equality follows since ℘N is invariant to time shifts, the first inequality follows

from the choice of M , and the third inequality follows from (4.21).

To bound the integrand in the third term above, let T ′ ≥ T1 and ζ ′ ∈ K(∆). Choose

0 < δ′ < δ (depending on T and s, and not on ζ ′ and T ′) such that ρ(φ1, φ2) < δ′/2 implies

d(φ1(T
′), φ2(T

′)) < δ/2 whenever φ1 ∈ D([0, T ′],M1(Z)) and φ2 ∈ Φ
[0,T ′]
ζ′ . Note that if a

trajectory φ on [0, T ′] with initial condition φ(0) = ζ ′ is such that ρ(φ,Φ
[0,T ′]
ζ′ (s)) < δ′/2, then

there exists a trajectory φ′ ∈ Φ
[0,T ′]
ζ′ (s) such that ρ(φ, φ′) < δ′/2. By the choice of δ′, we have

d(φ(T ′), φ′(T ′)) < δ/2. By Lemma 4.9, we find that d(φ′(T ′),Ξ(s)) ≤ δ′/2. Hence by triangle

inequality d(φ(T ′),Ξ(s)) < δ/2 + δ′/2 < δ. The contrapositive of the above statement is

d(φ(T ′),Ξ(s)) ≥ δ ⇒ ρ(φ,Φ
[0,T ′]
ζ′ (s)) ≥ δ′/2.
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We therefore conclude that

PN
ζ′ (d(µ

N(T ′),Ξ(s)) ≥ δ) ≤ PN
ζ′ (ρ(µ

N ,Φ
[0,T ′]
ζ′ (s)) ≥ δ′/2) (4.23)

for all T ′ ≥ T1, ζ
′ ∈ K (∆) ∩MN

1 (Z), and N ≥ 1.

Note that the integrand in the last term of (4.22) can be upper bounded by

PN
ζ (µ

N /∈ Sm0(∆,M), d(µN(T ),Ξ(s)) ≥ δ)

= PN
ζ (µ

N(m) ∈ K(∆) for some m = 1, 2, . . . ,m0, d(µ
N(T ),Ξ(s)) ≥ δ)

≤
m0∑
m=1

sup
ζ′∈K(∆)∩MN

1 (Z)

PN
ζ′ (d(µ

N(T −m),Ξ(s)) ≥ δ)

≤
m0∑
m=1

sup
ζ′∈K(∆)∩MN

1 (Z)

PN
ζ′ (ρ((µ

N(t), t ∈ [0, T −m]),Φ
[0,T−m]
ζ′ (s)) ≥ δ′/2) (4.24)

where the first inequality follows from the strong Markov property of µN and the second inequal-

ity follows from (4.23) by the choice of T . By the uniform LDP upper bound in Theorem 4.2,

for each m = 1, 2, . . .m0, there exist N(m) ≥ N2 such that

PN
ζ′ (ρ((µ

N(t), t ∈ [0, T −m]),Φ
[0,T−m]
ζ′ (s)) ≥ δ′/2) ≤ exp{−N(s− γ/2)}

for all ζ ′ ∈ K (∆)∩MN
1 (Z) and N ≥ N(m). Put N3 = max{N(m),m = 1, 2, . . . ,m0, N1, N2}.

Then (4.24) yields

PN
ζ (µ

N /∈ Sm0(∆,M), d(µN(T ),Ξ(s)) ≥ δ) ≤ m0 exp{−N(s− γ/2)}

for all ζ ∈ KM ∩MN
1 (Z) and N ≥ N3. Substitution of this back in (4.22) yields

℘N{ζ ∈ M1(Z) : d(ζ,Ξ(s)) ≥ δ} ≤ exp{−Ns}+ (m0 + 1) exp{−N(s− γ/2)}

for all N ≥ N3. Finally, choose N0 ≥ N3 such that 1 + (m0 + 1) exp{Nγ/2} ≤ exp{Nγ} for all

N ≥ N0. Then the above display becomes

℘N{ζ ∈ M1(Z) : d(ζ,Ξ(s)) ≥ δ} ≤ exp{−N(s− γ)}

for all N ≥ N0. This completes the proof of the lemma.
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4.7 Proof of Theorem 4.1

We now complete the proof of Theorem 4.1.

• (Compactness of level sets). For any s > 0, by Lemma 4.7, the set Ξ(s) = {ξ ∈ M1(Z) :

V (ξ) ≤ s} is a compact subset of M1(Z);

• (LDP lower bound). Given γ > 0, δ > 0, and ξ ∈ M1(Z), by Lemma 4.3, there exists

N0 ≥ 1 such that

℘N{ζ ∈ M1(Z) : d(ζ, ξ) < δ} ≥ exp{−N(V (ξ) + γ)}

for all N ≥ N0;

• (LDP upper bound). Given γ > 0, δ > 0, and s > 0, by Lemma 4.10, there exists N0 ≥ 1

such that

℘N{ζ ∈ M1(Z) : d(ζ,Ξ(s)) ≥ δ} ≤ exp{−N(s− γ)}

for all N ≥ N0.

This completes the proof of Theorem 4.1.

4.8 Two counterexamples

In this section, for two non-interacting counterexamples described in Section 4.1.2, we prove

that the quasipotential is not equal to the relative entropy with respect to the corresponding

globally asymptotically stable equilibrium. These two counterexamples are (i) a system of non-

interacting M/M/1 queues, and (ii) a system of non-interacting nodes in a wireless local area

network (WLAN) with constant forward transition rates. We detail the proofs in the case of

non-interacting M/M/1 queues. Similar arguments carry over to the case of non-interacting

WLAN system with constant forward transition rates as well.

4.8.1 A system of non-interacting M/M/1 queues

Recall the system of non-interacting M/M/1 queues described in Section 4.1.2.1. Recall the

relative entropy from (4.4) and the process-level large deviations rate function from (4.7). Also
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recall the function ϑ and the compact sets KM , M > 0. Define the quasipotential

VQ(ξ) := inf{SQ
[0,T ](φ|ξ

∗
Q), φ(0) = ξ∗Q, φ(T ) = ξ, T > 0}, ξ ∈ M1(Z),

where SQ is defined by (4.7) with E replaced by EQ and Lζ replaced by LQ for each ζ ∈ M1(Z).

We first prove that the quasipotential VQ is not finite outside K . The key property used

for this is the fact that the attractor ξ∗Q has geometric decay. As a consequence ⟨ξ∗Q, ϑ⟩ < ∞.

Using this property, we first show that if ξ /∈ K , then the associated quasipotential evaluated

at ξ cannot be finite. This is shown by producing a lower bound for the cost of any trajectory

starting at ξ∗Q and ending at ξ /∈ K from the rate function in (4.7).

Lemma 4.11. If ξ ∈ M1(Z) is such that ξ /∈ K , then VQ(ξ) = ∞.

Proof. Fix ξ ∈ M1(Z). Let T > 0 and φ ∈ D([0, T ],M1(Z)) be such that φ0 = ξ∗Q and φT = ξ.

For each n ≥ 1, define fn by

fn(z) =


z, if z ≤ n

2n− z, if n+ 1 ≤ z ≤ 2n,

0, if z > 2n,

and define f∞(z) = z for each z ∈ Z. We first assume that ⟨ξ, f∞⟩ = ∞. In particular, ξ /∈ K .

Using the function fn in place of f in the RHS of (4.7), we have

SQ
[0,T ](φ|ξ

∗
Q) ≥ ⟨φT , fn⟩ − ⟨ξ∗Q, fn⟩ −

∫
[0,T ]

⟨φu, L
Qfn⟩ −

∫
[0,T ]

∑
(z,z′)∈EQ

τ(fn(z
′)− fn(z))λz,z′φu(z)du

= ⟨φT , fn⟩ − ⟨ξ∗Q, fn⟩ −
∫
[0,T ]

∑
(z,z′)∈EQ

(exp{fn(z′)− fn(z)} − 1)λz,z′φu(z)du,

where λz,z+1 = λf , z ∈ Z, and λz,z−1 = λb, z ∈ Z \{0}. Noting that fn(z
′)−fn(z) is either 1, 0

or −1 for each (z, z′) ∈ EQ, we have
∑

(z,z′)∈EQ(exp{fn(z
′)− fn(z)} − 1)λz,z′φu(z) ≤ 2(e− 1)λb

for each u ∈ [0, T ]. Hence the above becomes

SQ
[0,T ](φ|ξ

∗
Q) ≥ ⟨φT , fn⟩ − ⟨ξ∗Q, fn⟩ − 2(e− 1)λbT.

Note that ⟨ξ∗Q, f∞⟩ < ∞. Hence, letting n → ∞ and using the monotone convergence theorem,

we conclude that SQ
[0,T ](φ|ξ∗Q) = ∞.

We now assume that ξ /∈ K is such that ⟨ξ, f∞⟩ < ∞. Let T > 0 and φ ∈ D([0, T ],M1(Z))

be such that φ0 = ξ∗Q and φT = ξ. Without loss of generality, we can assume that supt∈[0,T ]⟨φt, f∞⟩ <

145



∞; otherwise the argument in the above paragraph shows that SQ
[0,T ](φ|ξ∗Q) = ∞. Define

ϑn(z) =


ϑ(z), if z ≤ n,

ϑ(2n− z) if n+ 1 ≤ z ≤ 2n,

0, if z > 2n.

Using ϑn in the RHS of (4.7), we get

SQ
[0,T ](φ|ξ

∗
Q) ≥ ⟨ξ, ϑn⟩ − ⟨ξ∗Q, ϑn⟩ −

∫
[0,T ]

∑
(z,z′)∈EQ

(exp{ϑn(z
′)− ϑn(z)} − 1)λz,z′φu(z)du.

Noting that ϑn(z
′) − ϑn(z) can be upper bounded by 1 + log(z + 1) for each (z, z′) ∈ EQ, it

follows that
∑

(z,z′)∈EQ(exp{ϑn(z
′) − ϑn(z)} − 1)λz,z′φu(z) ≤ 2λb(e(supt∈[0,T ]⟨φt, f∞⟩ + 1) − 1)

for each u ∈ [0, T ]. Hence the above display becomes

SQ
[0,T ](φ|ξ

∗
Q) ≥ ⟨ξ, ϑn⟩ − ⟨ξ∗Q, ϑn⟩ − 2λb(e( sup

t∈[0,T ]

⟨φt, f∞⟩+ 1)− 1)T.

As before, letting n → ∞, using the monotone convergence theorem, and noting that ξ∗Q ∈ K ,

we conclude that SQ
[0,T ](φ|ξ∗Q) = ∞.

Since ξ /∈ K , T > 0, and φ ∈ D([0, T ],M1(Z)) such that φ0 = ξ∗Q and φT = ξ are arbitrary,

the proof of the lemma is complete.

We now prove the main result of this section, namely, the quasipotential VQ is not equal to

the relative entropy I(·∥ξ∗Q).

Proposition 4.2. Let ξ ∈ M1(Z) be such that ⟨ξ, f∞⟩ < ∞ and ξ /∈ K . Then I(ξ∥ξ∗Q) < ∞
and V (ξ) = ∞. In particular, V ̸= I(·∥ξ∗Q).

Proof. By the Donsker-Varadhan variational formula (see Donsker and Varadhan [31, Lemma 2.1]),

for any ξ ∈ M1(Z) and any bounded function f on Z, we have

I(ξ∥ξ∗Q) ≥ ⟨ξ, f⟩ − log

(∑
z∈Z

exp{f(z)}ξ∗Q(z)

)
.

Recall the definition of fn and f∞ from the proof of Lemma 4.11. Let β̄ > 0 be such that∑
z∈Z exp{β̄z}ξ∗Q(z) < ∞. Replacing f by β̄fn in the above display, letting n → ∞ and using
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the monotone convergence theorem, we arrive at

β̄⟨ξ, f∞⟩ ≤ I(ξ∥ξ∗Q) + log

(∑
z∈Z

exp{β̄z}ξ∗Q(z)

)
.

It follows that

{ξ ∈ M1(Z) : I(ξ∥ξ∗Q) < ∞} ⊂ {ξ ∈ M1(Z) : ⟨ξ, f∞⟩ < ∞}.

On the other hand, since ⟨ξ∗Q, f∞⟩ < ∞, it is easy to check that {ξ ∈ M1(Z) : I(ξ∥ξ∗Q) < ∞} ⊃
{ξ ∈ M1(Z) : ⟨ξ, f∞⟩ < ∞}.

Let ξ ∈ M1(Z) be such that ⟨ξ, ϑ⟩ = ∞ and ⟨ξ, f∞⟩ < ∞. Then the above yields I(ξ∥ξ∗Q) <
∞. By Lemma 4.11, we see that VQ(ξ) = ∞. This completes the proof of the proposition.

4.8.2 A non-interacting WLAN system with constant forward rates

Recall the model described in Section 4.1.2.2. Define the quasipotential

VW (ξ) := inf{SW
[0,T ](φ|ξ∗W ), φ0 = ξ∗W , φT = ξ, T > 0}, ξ ∈ M1(Z),

where SW is defined by (4.7) with E replaced by EW and Lζ replaced by LW for each ζ ∈ M1(Z).

We now state the main result for this non-interacting wireless local area network.

Proposition 4.3. Let ξ ∈ M1(Z) be such that ⟨ξ, f∞⟩ < ∞ and ξ /∈ K . Then I(ξ∥ξ∗W ) < ∞
and V (ξ) = ∞. In particular, VW ̸= I(·∥ξ∗W ).

We start with the following lemma. The proof follows along similar lines of the proof of

Lemma 4.11 by noting that ⟨ξ∗W , ϑ⟩ < ∞, and it is left to the reader.

Lemma 4.12. If ξ ∈ M1(Z) is such that ξ /∈ K , then VW (ξ) = ∞.

Using the above lemma, we can now prove Proposition 4.3 along similar lines of the proof of

Proposition 4.2 in the previous section.
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4.A Proofs of Section 4.2

Proof of Lemma 4.1. Fix T > 0, s > 0, and K ⊂ M1(Z) compact. Given ν ∈ K, φ ∈ Φ
[0,T ]
ν (s)

and a finite set B ⊂ Z, choosing f(t, z) = 1{z∈B}, (4.6) yields

φt(B)− φr(B) =

∫
[s,t]

∑
(z,z′)∈E

(f(z′)− f(z))(1 + hφ(u, z, z
′))λz,z′(φu)φu(z)du

for all 0 ≤ r < t ≤ T . Noting that hφ ≥ −1, we get

|φt(B)− φr(B)| ≤
∫
[0,T ]

∑
(z,z′)∈E

(1 + hφ(u, z, z
′))× 1{u∈[r,t]}λz,z′(φu)φu(z)du. (4.25)

Noting that

sup


∫
[0,T ]

∑
(z,z′)∈E

τ ∗(hφ(u, z, z
′))λz,z′(φu)φu(z)du, φ ∈ Φ[0,T ]

ν (s), ν ∈ K

 ≤ s,

it follows that the family {1 + hφ, φ ∈ Φ
[0,T ]
ν (s), ν ∈ K} is uniformly integrable. That is,

sup

{∫
[0,T ]

(1 + hφ(u, z, z
′))× 1{1+hφ≥M}λz,z′(φu)φu(z)du, φ ∈ Φ[0,T ]

ν , ν ∈ K

}
→ 0

as M → ∞. Hence for any M > 0, using the boundedness of the transition rates (from

assumption (E2)), (4.25) yields

|φt(B)− φr(B)|

≤ 2Mλ(t− r) +

∫
[0,T ]

∑
(z,z′)∈E

(1 + hφ(u, z, z
′))× 1{1+hφ≥M}λz,z′(φu)φu(z)du.

for all 0 ≤ r < t ≤ T , and B ⊂ M1(Z). It follows that

sup
φ∈∪ν∈KΦ

[0,T ]
ν (s)

sup
t,r:|t−r|≤δ

d(φt, φr)

≤ 2Mλδ + sup
φ∈∪ν∈KΦ

[0,T ]
ν (s)

sup
t,r:|t−r|≤δ

∫
[0,T ]

∑
(z,z′)∈E

(1 + hφ(u, z, z
′))

× 1{1+hφ≥M}λz,z′(φu)φu(z)du
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Letting δ → 0 first and then M → ∞, we arrive at

lim
δ↓0

sup
φ∈∪ν∈KΦ

[0,T ]
ν (s)

sup
t,r:|t−r|≤δ

d(φt, φr) = 0.

Hence it follows that ∪ν∈KΦ
[0,T ]
ν (s) is precompact inD([0, T ],M1(Z)) (see, for example, Billings-

ley [12, Theorem 12.3]).

To show that ∪ν∈KΦ
[0,T ]
ν (s) is closed, let {φn, n ≥ 1} ⊂ ∪ν∈KΦ

[0,T ]
ν (s) and suppose that

φn → φ in D([0, T ],M1(Z)). Note that the mapping

M1(Z)× R∞ ∋ (u, v) 7→ sup
α∈R∞

{
⟨α, v − Λ∗

uu⟩ −
∑

(z,z′)∈E

τ(α(z′)− α(z))λz,z′(u)u(z)

}

is lower semicontinuous (see, for example, Berge [7, Theorem 1, page 115]). Hence, by Fatou’s

lemma, we see that

S[0,T ](φ|φ(0)) ≤ lim inf
n→∞

S[0,T ](φn|φn(0)) ≤ s,

and it follows that ∪ν∈KΦ
[0,T ]
ν (s) is closed. Consequently, ∪ν∈KΦ

[0,T ]
ν (s) is a compact subset of

D([0, T ],M1(Z)).

Proof of Theorem 4.2. Let MN
1 (Z) ∋ νN → ν in M1(Z) as N → ∞. Then the family

{µN
νN
, N ≥ 1} satisfies the LDP onD([0, T ],M1(Z)) with rate function S[0,T ](·|ν) (see Léonard [55,

Theorem 3.1] and Borkar and Sundaresan [15, Theorem 3.2]). By Lemma 4.1 on the com-

pactness of level sets of S[0,T ](·|ν), ν ∈ K, for any compact subset K of M1(Z), it follows

that the family {µN
ν , ν ∈ MN

1 (Z), N ≥ 1} satisfies the uniform large deviation principle on

D([0, T ],M1(Z)) over the class of compact subsets of M1(Z) with the family of rate functions

{S[0,T ](·|ν), ν ∈ M1(Z)} (see Budhiraja and Dupuis [17, Propositions 1.12, 1.14]).
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Chapter 5

Conclusion

This thesis studied the large time behaviour, metastability, and the asymptotics of the invariant

measure in models of Markovian mean-field interacting particle systems. The general princi-

ple in this thesis has been to first study the process-level large deviations of the underlying

stochastic model and then use this to study the large time behaviour, metastability, and the

large deviations of the invariant measure. In Chapter 2, we used the existing results on the

process-level large deviations of finite-state mean-field models to study its large time behaviour

and metastability. In Chapter 3, we proved the process-level large deviations of two time scale

mean-field models and then used the results of Chapter 2 to study its large time behaviour and

metastability. In Chapter 4, we considered countable-state mean-field models, extended the

process-level LDP to the uniform LDP over the class of compact subsets, and then used this to

prove the large deviations of the invariant measure.

This general principle of studying the large time behaviour of stochastic systems by first

studying the large deviations over finite time horizons and then passing to the large time limit

has been employed in other contexts as well [80, 23, 15, 58]. However, in Chapter 4, we demon-

strated two counterexamples where the LDP for the family of invariant measures holds but the

rate function for this LDP is not governed by the usual Freidlin-Wentzell quasipotential. This

suggests that, to apply the above general principle, the underlying stochastic dynamics must

have some “good” properties, especially for infinite-dimensional problems where the state space

of the underlying stochastic process is not locally compact. In the case of finite-dimensional

problems studied in Chapter 2 and Chapter 3, the assumptions imposed on the particle tran-

sition rates sufficed to prove the uniform LDP for the underlying model and the necessary

small-cost connection properties, which enabled us to carry out this general procedure. In

Chapter 4, however, we needed the additional 1/z-decay of the forward transition rates to

carry out the procedure.
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5.1 Future directions

We now discuss some open questions and future directions.

Uniform large deviations over the class of open subsets for countable-state mean-field models:

To study the large deviations of the family of invariant measures of countable-state mean-field

models in Chapter 4, we used the uniform large deviations of the empirical measure process

over the class of compact subsets of the space of probability measures on Z. An interesting open

question here is to establish the uniform LDP for the empirical measure process over the class

of open subsets of the space of probability measures on Z. In the case of finite-state models,

since the space of probability measures on a finite set is locally compact, the former uniform

LDP over the class of compact subsets of the space implies the uniform LDP over the class of

open subsets. This is no longer true for countable-state models since the closure of open sets are

not necessarily compact. It is not clear if the countable state space model studied in Chapter 4

satisfies the uniform LDP over the class of open subsets of the space; further assumptions

on the model are perhaps required to established this. This is an interesting future direction

to explore. Once this is established, we can study the asymptotics of the family of invariant

measures of countable-state mean-field models when the limiting dynamics possesses multiple

stable equilibria. We can also use this to study the exit time asymptotics, and the large time

behaviour and metastability in countable-state mean-field models using ideas similar to those

used in Chapter 2.

Generalised quasipotential: The counterexamples in Chapter 4 suggest that there could be

a more general notion of the quasipotential that governs the rate function for the family of

invariant measures of a broad class of problems. This generalised quasipotential may reduce

to the usual Freidlin-Wentzell quasipotential for finite-dimensional problems and the infinite-

dimensional problem considered in Chapter 4 with the 1/z-decay assumption on the transition

rates. It would be interesting to look for such a generalised quasipotential.

Models with diminishing transition rates: The main results of this thesis are proved under the

assumption that the transition rates of the particles are bounded away from 0. Many models

that arise in practice, especially those with a countable state space, have diminishing transition

rates as we approach some boundary of the state space; see, for example, Budhiraja et al. [19]

for the study of the process-level large deviations of the join-the-shortest queue model. In such

situations, the methods studied in this thesis needs to be extended suitably to establish the

process-level LDP. It would be interesting to study the large time behaviour and metastability in

the join-the-shortest queue model. More generally, it would be interesting to formulate a general
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mean-field interacting particle system with diminishing transition rates that is applicable for a

broad class of problems, study its process-level large deviations, the large time behaviour and

the exit time estimates, and the large deviations of the family of invariant measures.

Countable-state models with time scale separation: Another interesting direction is to explore

the large deviations of two time scale mean-field models with countable state space, which is

an extension to the model studied in Chapter 3. The proof techniques in Chapter 3 relies on

the fact that the state space is locally compact, and that nearby points in the space can be

connected with trajectories of small cost. These properties are then used to show the necessary

regularity properties of the variational problems studied in Chapter 3. If the state space (of the

empirical measure process) is not locally compact then the ideas used in the proofs of Chapter 3

are no longer directly applicable. It would be interesting to study this situation.
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Annales de l’Institut Henri Poincaré (B) Probabilités et statistiques, 31(2):289–323, 1995.

21, 22, 64, 70, 110, 118, 124, 149
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